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RESUMO 

Introdução: O aumento da população global e a diminuição das terras agrícolas desafiam o abastecimento de 
alimentos, agravado pela degradação da terra e escassez de água. A agricultura de precisão, usando soluções 
de IoT, oferece uma promessa para abordar essas questões, aumentando a produtividade, a lucratividade e a 
sustentabilidade ambiental. O artigo propõe um sistema automatizado de monitoramento e irrigação baseado em 
IoT com análise preditiva como uma solução. Objetivos: Desenvolver um modelo de irrigação baseado em IoT 
com computação em nuvem, um aplicativo móvel para monitoramento remoto e controle de irrigação, e um 
método de análise preditiva para previsão das condições climáticas. Métodos: Sensores IoT conectados a um 
Node MCU monitoram em tempo real a temperatura, umidade e umidade do solo. Uma bomba de água ajusta a 
irrigação de acordo. Os dados são enviados para o ThingSpeak para visualização e para o Firebase para 
armazenamento, acessíveis por meio de um aplicativo móvel. A análise preditiva combina dados de sensores e 
dados históricos do clima usando o algoritmo Random Forest para otimizar a irrigação. Isso determina a 
frequência, duração e tempo ideais de irrigação com base nos níveis previstos de temperatura e umidade do 
solo, garantindo a umidade ideal do solo para o crescimento das plantas. Resultados: O sistema exibiu 
resultados encorajadores. Aproveitando IoT, computação em nuvem e análise preditiva, ele mostrou potencial 
transformador. Oferecendo monitoramento preciso da umidade do solo, acesso instantâneo a dados e conselhos 
personalizados, o sistema pode elevar o gerenciamento de culturas, agilizar o consumo de água e aumentar a 
produtividade entre os agricultores indianos. Discussão: O sistema automatizado de monitoramento e irrigação 
de culturas tem potencial transformador na agricultura. Alguns escopos e aprimoramentos futuros podem incluir 
a ampliação da compatibilidade de culturas, integração de dados de satélite, aprimoramento do monitoramento 
de pragas, melhoria da conectividade, enriquecimento do aplicativo móvel, expansão por meio de parcerias e 
refinamento dos modelos preditivos. Conclusões: O sistema de monitoramento de culturas baseado em IoT 
revoluciona a agricultura indiana, otimizando a irrigação e integrando previsões climáticas. Com aprimoramentos 
de aplicativos móveis e melhorias futuras, ele promete uma agricultura sustentável e o empoderamento dos 
agricultores. 

Palavras-chave: Internet das Coisas, sensores IOT, random forest, aprendizado de máquina, análise preditiva. 

ABSTRACT 

Background: The rising global population and decreasing agricultural land challenge the food supply, worsened 
by land degradation and water scarcity. Using IoT solutions, precision farming offers promise for addressing these 
issues by enhancing productivity, profitability, and environmental sustainability. The paper proposes an IoT-based 
automated monitoring and irrigation system with predictive analysis as a solution. Aims: To develop an IoT-based 
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irrigation model with cloud computing, a mobile app for remote monitoring and irrigation control, and a predictive 
analysis method for forecasting weather conditions. Methods: IoT sensors are connected to a node MCU, and 
they monitor real-time temperature, humidity, and soil moisture. A water pump adjusts irrigation accordingly. Data 
is sent to ThingSpeak for visualization and Firebase for storage and is accessible via a mobile app. Predictive 
analysis combines sensor and historical weather data using the Random Forest algorithm to optimize irrigation. 
This determines the ideal irrigation frequency, duration, and timing based on predicted temperature and soil 
moisture levels, ensuring optimal soil moisture for plant growth. Results: The system exhibited encouraging 
outcomes. It displayed transformative potential by harnessing IoT, cloud computing, and predictive analytics. 
Offering precise soil moisture monitoring, instant data access, and tailored advice, the system can elevate crop 
management, streamline water consumption, and boost productivity among Indian farmers. Discussion: The 
automated crop monitoring and irrigation system has transformative potential in farming. Some future scope and 
enhancements may include broadening crop compatibility, integrating satellite data, enhancing pest monitoring, 
improving connectivity, enriching the mobile app, scaling up through partnerships, and refining the predictive 
models. Conclusions: The IoT-driven crop monitoring system revolutionizes Indian agriculture by optimizing 
irrigation and integrating weather forecasts. With mobile app enhancements and future improvements, it promises 
sustainable farming and empowerment for farmers. 

Keywords: Internet of Things, IOT sensors, random forest, machine learning, predictive analysis.  
  

 
 
1. INTRODUCTION:   
  

The world population is growing 
exponentially. The Food and Agriculture 
Organization predicts that food and feed 
production will need to increase by 70% by 2050 
to meet global demand (“The state of the world’s 
land and water resources for food and agriculture,” 
n.d.). However, agricultural land is shrinking, and 
natural resources are being depleted, creating a 
critical need to improve agricultural productivity 
(Kumar et al., 2008). The application of IoT 
(Internet of Things) solutions in agriculture, known 
as precision farming, can help bridge the gap 
between supply and demand, ensuring high 
productivity, profitability, and environmental 
protection (Verdouw et al., 2016). The adoption of 
IoT devices in agriculture is expected to reach 75 
million by 2020, with the global smart agriculture 
market tripling by 2025 (Adesta et al., 2017).  
  

 IoT technology enables farmers to reduce 
waste, improve yields, and make efficient use of 
resources such as water and electricity. Smart 
farming solutions use sensors to monitor crop 
fields, providing data on humidity, soil moisture, 
light, temperature, and crop health. Farmers can 
remotely monitor the field status and take 
necessary actions based on the data, such as 
initiating smart irrigation when soil moisture drops. 
These IoT solutions provide better control over 
livestock raising and growing processes, making 
them more predictable and efficient. 

The challenges facing agricultural growth 
include population growth, limited arable land, 
access to water, and changing dietary patterns. 
Rapid population growth, uneven land distribution, 
and land degradation hinder efforts to increase 

food production and meet basic needs. Rising 
incomes and dietary changes increase global food 
demand, necessitating increased agricultural 
output. However, factors such as climate change, 
underinvestment, and urbanization pose 
challenges to agricultural production.  

Total factor productivity (TFP) (Le Mouël & 
Forslund, 2017) measures agricultural productivity 
that considers inputs such as land, labor, fertilizer, 
and machinery. Improving TFP through advanced 
technology, improved seed varieties, 
mechanization, and efficient resource use is 
crucial to sustainably meeting the needs of a 
growing population. However, TFP growth is not 
keeping pace with targets, and low-income 
countries rely on changing land use, which leads 
to deforestation and land degradation. 

The world has lost a third of arable land in 
the past 40 years due to erosion and pollution 
(Quinton & Fiener, 2024). Continuous tillage, 
heavy fertilizer use, and deforestation (Lawrence 
& Vandecar, 2015) have degraded soils and 
affected their ability to store water. Soil erosion is 
occurring at a rate much faster than soil formation, 
posing a threat to agricultural productivity (Wu et 
al., 2018). As populations increase, per-capita 
farmland is decreasing, exacerbating the 
challenge of meeting food demand. 

Water scarcity is another significant concern 
for agriculture (Seckler et al., 1999). Irrigated 
agriculture is more productive than rain-fed 
agriculture, but competition for water resources is 
increasing due to population growth, urbanization, 
and climate change. Agriculture currently 
accounts for around 70% of global freshwater 
withdrawals, and reallocating water from 
agriculture to other sectors may be necessary in 
water-stressed regions (Giovannucci et al., 2012). 



 

Periódico Tchê Química.  ISSN 2179-0302. (2024); vol.21 (n°47) 
Downloaded from www.periodico.tchequimica.com 

  26 

Several works have been done in this 
regard. A few prominent and recent works include: 

Na et al. (2016) employ antimony electrodes 
for pH measurement. The inverse relationship 
between soil resistance and soil moisture is 
utilized for estimating soil moisture content, with 
corresponding circuitry developed accordingly. 
Soil temperature is determined using the 
DS18B20 sensor, which operates on the Dallas 
one-wire protocol. This system is integrated with 
Bluetooth technology to facilitate data transfer to a 
nearby mobile phone. 

Ananthi et al. (2017) tested soil using 
various sensors, including pH, temperature, and 
humidity sensors. Based on the results, farmers 
can select and cultivate crops that are most 
suitable for their soil conditions. 

Boobalan et al. (2018) propose a system 
that incorporates a Raspberry Pi, various sensors, 
a Pi camera, and a motor driver. The Pi camera 
captures video and transmits it to the cloud via the 
Raspberry Pi. 

Raut et al. (2018) describe an automatic 
irrigation system that also measures the levels of 
the three major macronutrients—nitrogen (N), 
phosphorus (P), and potassium (K)—in the soil, 
thereby saving farmers time, money, and energy. 

Bhatnagar and Chandra (2020) propose a 
soil health monitoring system that enables farmers 
to monitor soil moisture, soil temperature, and soil 
pH using an Android smartphone. 

Sarma et al. (2023) suggest an IoT-based 
agriculture environment and security monitoring 
system to address challenges in the agricultural 
sector, including water constraints, soil 
degradation, and climate change. 

1.1 Aim of the project 

To address the challenges faced by the 
agriculture sector, there is a need to accelerate 
productivity growth in agriculture through 
technological advancements, sustainable land 
management practices, and efficient resource 
use. Improving TFP, reducing soil erosion, and 
implementing water management strategies are 
essential for meeting future food demand and 
ensuring food security. Farmers can optimize 
resource use, improve yields, and contribute to a 
sustainable agricultural future by adopting IoT 
solutions and precision farming techniques. 

Integrating sustainable sensors, cloud-
based data analytics, weather predictions, and 
emerging technologies like the Internet of Things 
(IoT), Cloud Computing, Big Data, and Predictive 

Analysis holds immense potential in effectively 
addressing the problem at hand. Moreover, by 
incorporating a mobile app into the system, the 
real-time status of the field becomes easily 
accessible, allowing for remote control of the 
irrigation system. 

Continuous real-time monitoring of the field 
throughout the year is made possible by deploying 
sustainable sensors. These sensors collect crucial 
data on environmental factors such as 
temperature, humidity, soil moisture, and sunlight 
exposure. Leveraging the power of the IoT, these 
sensors are seamlessly connected, enabling the 
transmission of real-time data for analysis. 

The collected data can be efficiently 
processed and analyzed using cloud-based 
infrastructure and data analytics tools. Cloud 
Computing provides scalability and computational 
resources for handling large datasets, while 
advanced analytics techniques, including machine 
learning, enable the extraction of valuable 
insights. 

Considering weather predictions in the 
analysis adds another layer of understanding to 
the field conditions. Predictive Analysis methods 
help anticipate future trends and potential risks, 
enabling proactive decision-making. 

To enhance accessibility and control, 
connecting the system to a mobile app is highly 
beneficial. This integration allows users to access 
the real-time status of the field remotely. 
Additionally, it enables convenient control of the 
irrigation system through the app, empowering 
users to make adjustments based on the collected 
data and analysis. 

By combining these technologies and 
functionalities, the system becomes a 
comprehensive solution. It offers real-time 
monitoring and analysis and empowers users with 
remote control capabilities, ultimately leading to 
more efficient resource management, optimized 
irrigation practices, and improved agricultural 
outcomes. 

 

2. MATERIALS AND METHODS:  
 
 Our automated crop monitoring and 
irrigation system is a sophisticated solution 
designed to optimize agricultural practices and 
maximize crop yields. This comprehensive system 
comprises various components and technologies, 
each crucial in ensuring efficient and effective 
irrigation management. 
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2.1. Materials 

Figure 1 shows the block diagram of the 
system. 

 

Figure 1. Block Diagram of the System.  

The following are the components of our 
system: 

● Node MCU: At the core of our system lies 
the Node MCU (Dutta & Khurana, 2021). 
NodeMCU stands for Node Microcontroller 
Unit. It is a powerful microcontroller based 
on the ESP8266 WiFi module (Mesquita et 
al., 2019). This compact and versatile 
device serves as the central control unit, 
responsible for gathering data from various 
sensors, processing it, and communicating 
with the cloud and mobile app. 

● Soil moisture sensor: To monitor soil 
moisture levels, we employ a high-
precision soil moisture sensor FC-28 
(Bhadani & Vashisht, 2019). This sensor 
measures the moisture content in the soil, 
providing valuable insights into the 
watering needs of the crops. By regularly 
collecting and analyzing this data, farmers 
can ensure optimal irrigation levels and 
prevent under or overwatering. 

● Humidity and temperature sensor: In 
addition to monitoring soil moisture, our 
system also tracks humidity levels in the 
farm environment. DHT11 humidity and 
temperature sensor (Gay & Gay, 2018) is 
deployed to measure the amount of 
moisture present in the air. This data helps 
farmers understand the atmospheric 
conditions and make informed decisions 
regarding irrigation scheduling. 

● Barometric Sensor: To gauge 
atmospheric pressure, which can impact 
crop growth and water requirements, a 
BMP280 barometric sensor (Kusuma et 
al., 2023) is integrated into our system. 
Farmers can anticipate weather patterns 

by monitoring atmospheric pressure 
changes and adjust their irrigation plans 
accordingly. This information proves 
invaluable in ensuring that crops receive 
the appropriate amount of water at the right 
time. 

● ThingSpeak: To facilitate data 
management and analytics, our system 
incorporates ThingSpeak (Nakhuva & 
Champaneria, 2015), an open-source 
Internet of Things (IoT) platform. This 
cloud-based platform receives and stores 
the data collected by the sensors, allowing 
for real-time monitoring and analysis. 
ThingSpeak also offers visualization tools 
that enable users to track historical data 
trends, helping farmers identify patterns 
and make data-driven decisions. 

● Firebase: To enhance the functionality 
and scalability of our system, we integrate 
Firebase (Moroney & Moroney, 2017), a 
popular mobile and web application 
development platform. Firebase serves as 
a real-time database, enabling seamless 
synchronization of data across multiple 
devices and providing instant updates to 
users. By leveraging Firebase's 
capabilities, our system ensures that users 
have access to the latest information 
regarding their crops and irrigation 
processes. 

● Android Mobile Application: To provide 
users with a user-friendly interface and 
seamless control over the system, we have 
developed an Android mobile application. 
This intuitive and feature-rich app 
empowers farmers to monitor real-time 
data, visualize historical trends, access 
crop yield predictions, and control the 
water pump. With just a few taps on their 
mobile devices, farmers can remotely start 
or stop the water pump, ensuring the 
irrigation process aligns with the specific 
needs of their crops. 

● Water pump: The pump itself is a vital 
system component. It is responsible for 
delivering water to the field based on the 
data collected from the soil moisture 
sensor. Integrating the water pump into our 
automated system eliminates the need for 
manual irrigation management and 
reduces the risk of human error. This 
automated approach guarantees 
consistent and optimized watering, 
promoting healthy crop growth and 
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minimizing water waste. 

Figure 2 shows the working of the prototype of our 
system. 

 

Figure 2: Prototype of the system 

2.2. Methods 

The workflow begins with data collection from 
soil moisture, humidity, and pressure sensors, 
followed by data processing and transmission to 
cloud platforms such as ThingSpeak and 
Firebase. Through an intuitive mobile app, farmers 
can access real-time data, control the water pump 
remotely, and gain valuable insights into crop 
conditions. With optimization and decision-making 
capabilities, this system enhances sustainable 
agriculture practices, helping farmers make 
informed choices and achieve maximum crop 
productivity: 

2.2.1. Data Collection 

The system utilizes various sensors, 
including a soil moisture sensor, humidity sensor, 
and barometric pressure sensor, to collect data 
related to soil moisture, atmospheric humidity, and 
atmospheric pressure. These sensors are 
connected to the Node MCU, which acts as the 
central control unit of the system.  

The FC-28 soil moisture sensor is 
connected to the analog pin A0 of the NodeMCU. 
The DHT11 humidity and temperature sensor is 
connected to digital pin D2. 

To initialize the I2C (Inter-Integrated Circuit) 
communication interface on the NodeMCU 
microcontroller,  pin 4 is used for SDA and pin 5 is 
used for SCL. I2C is a popular communication 
protocol used to connect multiple peripheral 
devices with a microcontroller or a 

microprocessor. It allows multiple devices to 
communicate using only two wires: SDA (Serial 
Data Line) and SCL (Serial Clock Line). This 
allows the NodeMCU to communicate with I2C-
compatible devices such as the BMP280 sensor. 

Lastly, the power source is connected to 
the NodeMCU and the water pump is connected 
to the digital pin D1. 

The MicroPython firmware version 1.22.2 
(Tollervey, 2017; Gaspar et al., 2020) is flashed to 
the NodeMCU board. MicroPython is a lean and 
efficient Python 3 programming language 
implementation optimized to run on 
microcontrollers and embedded systems.  

The following Python modules 
(“MicroPython libraries — MicroPython latest 
documentation,” n.d.). are used to gain access to 
the necessary functions and classes to control the 
microcontroller's pins, communicate with I2C 
(Inter-Integrated Circuit) devices, perform serial 
communication, read analog values, work with 
time-related operations, and interface. 

● machine.Pin: This module provides an 
interface to control the pins of the 
microcontroller. It allows you to configure 
pins as inputs or outputs, set their state, 
and read their values. It is commonly used 
for interacting with sensors, actuators, and 
other hardware peripherals connected to 
the microcontroller. 

● machine.I2C: The I2C (Inter-Integrated 
Circuit) module enables communication 
with devices that support the I2C protocol. 
It allows data to be sent and received over 
the I2C bus, which is a popular 
communication interface for sensors, 
displays, and other devices. 

● machine.UART: The UART (Universal 
Asynchronous Receiver-Transmitter) 
module provides access to the serial 
communication interface on the 
microcontroller. It allows data to be sent 
and received over serial connections, such 
as with a computer or other devices. 

● machine.ADC: The ADC (Analog-to-
Digital Converter) module provides access 
to the analog-to-digital converter on the 
microcontroller. It allows to read analog 
voltages from sensors or other analog 
sources. 

● time: The time module provides functions 
to work with time-related operations, such 
as adding delays, measuring time 
intervals, and getting the current time. 
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● bmp280: This module provides a driver to 
interact with the BMP280 barometric 
pressure and temperature sensor. It allows 
data such as temperature and atmospheric 
pressure to be read from the sensor. 

● dht: This module provides a driver to 
interact with DHT series humidity and 
temperature sensors, such as the DHT11 
and DHT22. It allows data such as 
temperature and humidity to be read from 
the sensor. 

2.2.2 Data Processing and Transmission 

The Node MCU processes the data 
collected from the sensors, performing necessary 
calculations and formatting. The processed data is 
then transmitted to the cloud platform, ThingSpeak 
and Firebase for storage and further analysis. 

2.2.2.1 Data Upload to ThingSpeak 
Firstly, we set up the credentials for 

ThingSpeak: our Channel ID and API Keys. We 
also define an interval of 30 seconds. We set up a 
loop to send the sensor data to our ThingSpeak 
channel every 30 minutes. 

2.2.2.2 Data Upload to Firebase 
Firebase, a real-time database, is used to 

synchronize the data across multiple devices and 
provide instant updates to users. 

To connect our device to Google Firebase 
we have used the Firebase Admin SDK (Yahiaoui, 
2017). The Admin SDK allows to interact with 
Firebase services, including the Real-time 
Database and Firestore (Kesavan et al., 2023), a 
flexible, scalable, and server-less cloud database 
provided by Google as part of the Firebase 
platform.  

2.2.3 Mobile Application 

An Android mobile app is developed to 
provide a user-friendly interface for farmers to 
interact with the system. The mobile app allows 
farmers to monitor real-time data, visualize 
historical trends, and control the water pump 
remotely. Through the app, users can access the 
ThingSpeak visualizations and the Firebase Real-
time Database to gain insights to the data. 

The mobile application has been developed 
using AppGyver (Oteyo et al., 2021), a low-code 
WYSIWYG (What You See Is What You Get) app 
development platform that allows users to create 
web and mobile apps using a visual interface. It 
offers a range of pre-built components and 
supports integration with various APIs.  

The app shows the status of the water pump 
(ON/OFF) along with an option to toggle the 

status. It also displays the temperature, humidity, 
atmospheric pressure, and soil moisture levels in 
real time. Figure 3 shows the mobile application 
dashboard interface. 

 

Figure 3: Mobile application dashboard interface 

2.2.4 Irrigation Control 

The water pump, a critical component of the 
system, is controlled based on the data collected 
from the soil moisture sensor. The system 
analyzes the soil moisture data to determine the 
optimal irrigation requirements. Farmers can 
remotely control the water pump through the 
mobile app via the Node MCU, selecting from 
options such as turning it on, or off. 

For the coding part, we use relay module 
and MQTT. A relay module is an electrical switch 
that uses an electromagnet to control the flow of 
current to an external device or circuit. It acts as a 
digital switch that can be controlled by a 
microcontroller or a device like the NodeMCU. 
When energized, the relay closes the circuit, 
allowing current to flow through it and activating 
the connected device. When de-energized, the 
relay opens the circuit, interrupting the current flow 
and deactivating the connected device.  

MQTT (Message Queuing Telemetry 
Transport) is a lightweight messaging protocol 
commonly used in IoT (Internet of Things) 
applications. It is designed to be efficient, simple 
to implement, and well-suited for constrained 
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devices with low bandwidth and limited processing 
capabilities. 

2.2.5 Predictive Analysis and Crop Yield 
Prediction 

Predictive analysis (Joshi et al., 2020) is a 
powerful methodology that utilizes historical data 
and statistical algorithms to forecast future 
outcomes or trends. In the context of agriculture 
and environmental management, predictive 
analysis plays a crucial role in optimizing decision-
making processes. By analyzing historical trends, 
environmental conditions, and irrigation practices, 
the system can forecast the future yield of crops. 
These predictions assist farmers in making 
informed decisions regarding crop management 
and resource allocation.  

To implement predictive analysis into the 
system, we have used the following steps: 

Over a period of time, the data collected 
from the sensors is combined with historical 
weather obtained from a public weather database 
OpenWeather’s API, One Call API version 3.0 
(“OpenWeatherMap.org.,” n.d.) to create a 
comprehensive dataset. The dataset has the 
following features as shown in Figure 4. 

Column Names: 
Index(['Date', 'Time', 'Temperature', 
'Humidity', 'Soil Moisture', 
       'Wind Speed', 'Wind Direction', 
'Rainfall'], 
      dtype='object') 
 
Data Types: 
Date               object 
Time               object 
Temperature         int64 
Humidity            int64 
Soil Moisture       int64 
Wind Speed          int64 
Wind Direction     object 
Rainfall          float64 
dtype: object 
 

Figure 4: Feature of the dataset 

The dataset is divided into two subsets: 
training and test sets. The training set (80% of the 
data) is used to train the model, while the test set 
(the remaining 20%) is kept aside to evaluate the 
model's performance.  

The random forest (Breiman, 2001) 
algorithm as the machine learning model for 
prediction due to its ability to handle both 
regression tasks (predicting continuous variables) 
and classification tasks, as well as its robustness 
and feature importance analysis. In the random 
forest algorithm, multiple decision trees are trained 
independently and combined to make predictions.  

The random forest model is trained using 
the training set. The model learns the relationship 
between the input features (such as Temperature, 
Humidity, etc.) and the target variables 
(Temperature and Soil Moisture). 

The performance of the trained model is 
accessed using the test set. The Mean Squared 
Error (MSE) (Hodson et al., 2021) evaluation 
metric was used to gauge the accuracy of the 
model's temperature and soil moisture levels 
predictions. 

The Mean Squared Error (MSE) is a 
common metric used to evaluate the performance 
of regression models, particularly in machine 
learning tasks. It measures the average of the 
squared differences between the predicted values 
and the actual values. Mathematically, the MSE is 
calculated shown in Equation 1: 

𝑀𝑆𝐸  ∑ 𝑦  𝑦 ………………… (1) 

Where: 

𝑛 -  number of samples or data points in the 
dataset. 

𝑦  - the actual value of the target variable for 
the ith data point. 

𝑦  - the predicted value of the target variable 
for the ith data point. 

The MSE computes the squared differences 
between each predicted value and its 
corresponding actual value, then averages these 
squared differences across all data points.  

An algorithm is developed that takes the 
predicted temperature and soil moisture levels as 
inputs. These predictions determine the optimal 
irrigation frequency, duration, and timing to 
maintain the desired soil moisture level and 
support plant growth.  

2.2.5 Source Codes 

The implementation of the system involves 
two key components: real-time control of irrigation 
using the NodeMCU microcontroller, and 
predictive analysis. Here we provide the source 
code for both the components. 
2.2.5.1 Arduino Code 

The following code connects the sensors to 
the Node MCU and periodically uploads the data 
to ThingSpeak and Firebase database. The code 
for this section is written in MicroPython version 
1.22.2 using the Arduino IDE. 
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Firstly, the necessary libraries are imported. 

import dht 
import bmp280 
import machine 
import time 
from umqtt.simple import MQTTClient 
import urequests 
import firebase_admin 
from firebase_admin import credentials, db 

 

The sensor connections are then set up with 
the NodeMCU. Analog pin A0 is used for reading 
soil moisture levels. Digital pin 

# Setting up the sensor connections with 
NodeMCU 
 
# assigned to the analog pin A0 for 
reading soil moisture levels 
sensorpin1 = machine.A0 
 
# assigned to digital pin 2 for the DHT11 
temperature and humidity sensor 
sensorpin2 = machine.Pin(2) 
 
dht_sensor = dht.DHT11(sensorpin2) 
 
# initializing I2C communication using 
pins 5 (SCL) and 4 (SDA) 
i2c = machine.I2C(scl=machine.Pin(5), 
sda=machine.Pin(4)) 
 
# initializing the BMP280 sensor for 
atmospheric pressure readings 
bmp = bmp280.BMP280(i2c=i2c) 

 

After that, we define the functions to read 
data from the sensors. 

# Defining the functions to read data from 
the sensors 
 
def read_soil_moisture(): 
    # Reading the soil moisture sensor and 
converts the raw value to a percentage 
    value = sensorpin1.read() 
    moisture_percentage = (value / 1023) * 
100 
    return moisture_percentage 
 
def read_temperature_humidity(): 
    # Reading temperature and humidity 
from DHT sensor 
    dht_sensor.measure() 
    temperature = dht_sensor.temperature() 
    humidity = dht_sensor.humidity() 
    return temperature, humidity 
 
def read_atmospheric_pressure(): 
    # Reading atmospheric pressure from 
BMP280 sensor 
    pressure = bmp.pressure 
    return pressure 

 

 

 

Functions are defined to print the read data. 

# Printing the sensor readings 
def print_sensor_data(): 
    timestamp = time.strftime('%Y-%m-%d 
%H:%M:%S') 
    temperature, humidity = 
read_temperature_humidity() 
    atmospheric_pressure = 
read_atmospheric_pressure() 
    soil_moisture = read_soil_moisture() 
    print("Timestamp:", timestamp) 
    print("Temperature:", temperature, 
"°C") 
    print("Humidity:", humidity, "%") 
    print("Pressure:", 
atmospheric_pressure, "hPa") 
    print("Soil Moisture:", soil_moisture, 
"%") 
    print() 

 

The pump is set up. 

# Setting up the Pump 
relay_pin = machine.Pin(5, 
machine.Pin.OUT) 
 
def turn_on_pump(): 
    #Turning on the water pump 
    relay_pin.value(0) 
    print("Pump is ON") 
 
def turn_off_pump(): 
    #Turning off the water pump 
    relay_pin.value(1) 
    print("Pump is OFF") 

 

Post that step, the MQQT protocol is set up. 

# MQTT setup 
mqtt_broker = 'mqtt.thingspeak.com' 
mqtt_port = 1883 
mqtt_user = 'smartagriculture' 
mqtt_password = 'SmaAg@321' 
mqtt_topic = 'water_pump/control' 
 
def mqtt_callback(topic, msg): 
    message = msg.decode('utf-8') 
    if message == 'ON': 
        turn_on_pump() 
    elif message == 'OFF': 
        turn_off_pump() 
    else: 
        print("Invalid command.") 
 
client = MQTTClient("nodemcu_client", 
mqtt_broker, mqtt_port, mqtt_user, 
mqtt_password) 
client.set_callback(mqtt_callback) 
client.connect() 
client.subscribe(mqtt_topic) 
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Now, the ThingSpeak Channel is set up with 
the API Key.  

# Setting up the credentials for 
ThingSpeak: Channel and API 
channel_id = "2179018" 
write_api_key = "Y4VCD299459S30JQ" 
read_api_key = "H800DIMY47WE2N3D" 
interval = 5 * 60   
# 5 minutes interval 

 

Data is read from the sensors and sent to 
ThingSpeak every 5 minutes. 

# Reading the data from the sensors 
def read_sensor_data(): 
    moisture = read_soil_moisture() 
    temperature, humidity = 
read_temperature_humidity() 
    pressure = read_atmospheric_pressure() 
    return moisture, temperature, 
humidity, pressure 
 
# Defining a function to send data to 
ThingSpeak 
def send_data_to_thingspeak(timestamp, 
moisture, temperature, humidity, 
pressure): 
    # Sending sensor data to ThingSpeak 
    url = 
"https://api.thingspeak.com/update?api_key
={}".format(write_api_key) 
    payload = 
"field1={:.2f}&field2={:.2f}&field3={:.2f}
&field4={:.2f}&field5={:.2f}".format( 
        timestamp, moisture, temperature, 
humidity, pressure 
    ) 
    try: 
        response = urequests.get(url, 
params=payload) 
        response.close() 
        print("ThingSpeak Update 
successful.") 
    except Exception as e: 
        print("ThingSpeak Update error: 
{e}") 
 
# Setting up a loop to send the sensor 
data to our ThingSpeak channel every 5 
minutes 
while True: 
    timestamp = time.time() 
    moisture, temperature, humidity, 
pressure = read_sensor_data() 
    send_data_to_thingspeak(timestamp, 
moisture, temperature, humidity, pressure) 
    time.sleep(interval) 

 

 

 

 

 

 

 

Next, the Firebase Database is set up. 

# Firebase setup 
cred = 
credentials.Certificate('path/to/smart-
agriculture-2e093.json') 
firebase_admin.initialize_app(cred, 
{'databaseURL': 'https://smart-
agriculture-2e093-default-
rtdb.firebaseio.com/'}) 
ref = db.reference('/') 

 

Now, the weather data has been sent to 
Firebase. 

# Sending the weather data to Firebase 
database 
def send_weather_data(moisture, 
temperature, humidity, pressure): 
    timestamp = int(time.time()) 
    data = { 
        'Timestamp': timestamp, 
        'Soil Moisture': moisture, 
        'Temperature': temperature, 
        'Humidity': humidity, 
        'Pressure': pressure, 
    } 
    try: 
        ref.push(data) 
        print("Database Updated.") 
    except Exception as e: 
        print("Database Update error: 
{e}") 

 

The main loop continuously reads sensor 
data, prints it, and sends it to the Firebase 
database at a predefined interval. 

# Main loop 
while True: 
    try: 
        print_sensor_data() 
        
send_weather_data(*read_sensor_data()) 
    except Exception as e: 
        print("Error: {e}") 
    time.sleep(interval 

 

2.2.5.2 Predictive Analysis Code 
The code below predicts the temperature 

and soil moisture levels, and based on these 
inputs, the optimal irrigation frequency, duration, 
and timing are calculated to maintain the desired 
soil moisture level. 

 

The coding has been done in Python 3.12.2 
using Jupyter Notebook.  
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Firstly, the necessary libraries are imported. 

import pandas as pd 
from sklearn.model_selection import 
train_test_split 
from sklearn.ensemble import 
RandomForestRegressor 
from sklearn.metrics import 
mean_squared_error 

 

The dataset that has been formatted into a 
CSV (Comma Separated Values) file is now 
loaded. 

# Loading the dataset 
data = pd.read_csv('weather_data.csv') 

 

The data is split into features and target 
variables. 

# Splitting the data into features and 
target variables 
X = data[['Temperature', 'Humidity', 'Wind 
Speed', 'Wind Direction', 'Rainfall']] 
y_temperature = data['Temperature'] 
y_soil_moisture = data['Soil Moisture'] 

 

Then, the dataset is split into training and 
testing data. 80% of the data will be used for 
training and the remaining 20% for testing. The 
‘random_state’ parameter specifies the seed value 
for the random number generator. This seed is 
used to ensure that the data split is reproducible. 

# Splitting data into training and testing 
sets 
X_train, X_test, y_temp_train, 
y_temp_test, y_soil_train, y_soil_test = 
train_test_split(X, y_temperature, 
y_soil_moisture, test_size=0.2, 
random_state=42) 

 

The random forest model for temperature 
and soil moisture predictions.  

Here, the ‘n_estimators’ parameter specifies 
the number of decision trees to be used in the 
random forest. In this case, n_estimators=100 
means that the random forest will consist of 100 
decision trees. 

# Training the random forest model for 
temperature prediction 
rf_temp = 
RandomForestRegressor(n_estimators=100, 
random_state=42) 
rf_temp.fit(X_train, y_temp_train) 

 

# Training the random forest model for 
soil moisture prediction 
rf_soil = 
RandomForestRegressor(n_estimators=100, 
random_state=42) 
rf_soil.fit(X_train, y_soil_train) 

 

Temperature and soil moisture predictions 
are made using the trained models on the testing 
data. 

# Making predictions 
temp_predictions = rf_temp.predict(X_test) 
soil_predictions = rf_soil.predict(X_test) 

 

Mean squared error (RMSE) is calculated 
for both temperature and soil moisture predictions. 

# Evaluating the models 
temp_rmse = 
mean_squared_error(y_temp_test, 
temp_predictions, squared=False) 
soil_rmse = 
mean_squared_error(y_soil_test, 
soil_predictions, squared=False) 
 
print(f"Temperature RMSE: {temp_rmse}") 
print(f"Soil Moisture RMSE: {soil_rmse}") 

 

An algorithm is now created to adjust 
irrigation frequency and duration based on 
temperature and soil moisture predictions. It 
categorizes irrigation frequency and duration into 
"High/Low/Normal" and "Long/Short/Normal," 
respectively, based on the predictions. 

# Algorithm for adjusting irrigation 
frequency, duration, and timing 
def adjust_irrigation(temp_prediction, 
soil_moisture_prediction): 
    if temp_prediction > 30:   
        irrigation_frequency = "High" 
    elif temp_prediction < 10:   
        irrigation_frequency = "Low" 
    else: 
        irrigation_frequency = "Normal" 
     
    if soil_moisture_prediction < 20:   
        irrigation_duration = "Long" 
    elif soil_moisture_prediction > 80:   
        irrigation_duration = "Short" 
    else: 
        irrigation_duration = "Normal" 
     
    return irrigation_frequency, 
irrigation_duration 

 

Lastly, the algorithm is tested by providing 
five test cases. For each test case, temperature 
and soil moisture predictions are used to 
recommend irrigation frequency and duration. 
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# Testing the algorithm 
print("Testing:") 
for i in range(5): 
    temp_pred = temp_predictions[i] 
    soil_pred = soil_predictions[i] 
    irrigation_frequency, 
irrigation_duration = 
adjust_irrigation(temp_pred, soil_pred) 
    print(f"Test {i+1}:") 
    print(f"  - Temperature Prediction: 
{temp_pred:.2f}°C") 
    print(f"  - Soil Moisture Prediction: 
{soil_pred:.2f}%") 
    print(f"  - Recommended Irrigation 
Frequency: {irrigation_frequency}") 
    print(f"  - Recommended Irrigation 
Duration: {irrigation_duration}") 

 
3. RESULTS AND DISCUSSION:  
 
3.1. Results 

In the context of Indian farming, the 
automated crop monitoring and irrigation system 
has shown promising results during the testing 
phase. By utilizing IoT technology, cloud 
computing, and predictive analytics, the system 
has the potential to revolutionize agriculture 
practices and significantly benefit Indian farmers. 
Let's explore how the system performed and its 
positive impact on crop monitoring and irrigation. 

The experimental evaluation of the system 
was conducted in two distinct phases: Weather 
Monitoring and Irrigation Phase and the Predictive 
Analysis Phase. 

3.1.1 Weather Monitoring and Irrigation Phase 

In the Weather Monitoring and Irrigation 
phase, the system demonstrated remarkable 
proficiency in acquiring real-time data and 
effectively controlling the water pump as depicted 
in Figure 5. The ThingSpeak content was updated 
correctly as shown in Figure 6. Across different 
settings, the system consistently provided 
accurate temperature, pressure, soil moisture, and 
humidity readings. The efficient water pump 
control mechanism ensured optimal irrigation 
management, enhancing crop health and 
productivity. 

 

Figure 5: Output of Arduino Code 

 

Figure 6: ThingSpeak Output 

3.1.2 Predictive Analysis Phase 

3.1.2.1 Testing Algorithm for Weather Prediction 
and Irrigation Recommendations 

In the Predictive Analysis phase, the 
algorithm was first tested to check if the weather 
prediction and irrigation recommendations were 
working correctly. They were both found to be 
acceptable, as shown in Figure 7. 
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Figure 7: Output of Predictive Algorithm 

3.1.2.2 Performance Evaluation 

After that, the system's performance was 
evaluated over a span of one week. Data acquired 
from the system's sensors was amalgamated with 
historical weather data sourced from 
OpenWeather's API during this period. This 
integration resulted in the creation of a 
comprehensive dataset. A dataset comprising 100 
sets of temperature and soil moisture values, 
synchronized at identical timestamps was utilized 
for actual and predicted values. The system's 
predictive capabilities were assessed, revealing 
minimal deviation between the predicted and 
actual temperature and soil moisture levels, as 
shown in Figures 8(a) and 8(b). 

 

Figure 8(a): Temperature Predictions v/s 
Actual Data 

 

Figure 8(b): Soil Moisture Predictions v/s 
Actual Data 

3.1.2.3 Statistical Analysis of the Results 
Statistical analysis of the results involves 

examining various measures such as mean 
values, standard deviations, and confidence 
intervals to gain insights into the data's 
characteristics and the reliability of the predictions. 
Here's how each of these statistical measures 
contributes to the analysis. 

Mean Values 

The mean value represents the average of 
a dataset and provides a central tendency 
measure. Calculating the mean values of actual 
and predicted data helps understand the typical 
values observed for temperature and soil moisture 
levels. Comparing the mean values of actual and 
predicted data can indicate if the prediction model 
tends to overestimate or underestimate the 
variables. 

The mean values for the temperature and 
soil moisture predictions as compared to the 
means of the actual values, are given in Table 1. 

Temperature Soil Moisture
Actual 29.33097 67.23058
Predicted 29.31658 67.31588

Table 1: Mean values 

Standard Deviation 

Standard Deviations: Standard deviation 
quantifies the spread or dispersion of data points 
around the mean. A low standard deviation 
indicates that the data points are close to the 
mean, while a high standard deviation suggests 
greater variability. Analyzing the standard 
deviations of actual and predicted data helps 
assess the consistency and reliability of the 
predictions. Lower standard deviations imply more 
accurate and consistent predictions, while higher 
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deviations may indicate greater uncertainty. 

The standard deviations for the temperature 
and soil moisture predictions, as compared to of 
the actual values, are given in Table 2. 

 Temperature Soil Moisture 
Actual 1.453039693 1.311055

Predicted 1.436644586 1.349004

Table 2: Standard deviation 

Confidence Intervals 

Confidence intervals provide a range of 
values within which the true population parameter 
is likely to lie with a certain level of confidence. 
Calculating confidence intervals for predicted 
values allows us to estimate the range within 
which the true values are expected to fall. A 
narrower confidence interval indicates higher 
precision and confidence in the predictions, while 
a wider interval suggests greater uncertainty. 
Analyzing the overlap or disparity between 
confidence intervals of actual and predicted data 
provides insights into the accuracy and reliability 
of the prediction model. We will consider the mean 
difference and standard error for the two sets of 
actual and predicted values of temperature and 
soil moisture predictions. 

The mean difference is a measure that 
quantifies the average disparity or discrepancy 
between two sets of values. It is calculated by 
finding the arithmetic mean of the differences 
between corresponding values in the two 
datasets. 

The standard error measures the variability 
or uncertainty associated with an estimate or 
statistic, such as the mean difference. It 
represents the standard deviation of a statistic's 
sampling distribution, indicating how much the 
sample statistic tends to vary from the true 
population parameter on average. A smaller 
standard error suggests that the sample statistic is 
more likely to be close to the population 
parameter, while a larger standard error indicates 
greater uncertainty or variability in the estimate. 

The confidence intervals are depicted in 
Figure 9. 

 

 

Temperature Predictions 
 
Mean Difference: 0.01438613861386166 
Standard Error: 0.023571424932026137 
Confidence Interval: (-
0.03237889710055178, 0.061151174328275104) 
 
Soil Moisture Predictions  
 
Mean Difference: -0.08530000000000029 
Standard Error: 0.03955781474084111 
Confidence Interval: (-
0.16379128657341727, -
0.006808713426583318) 
 

Figure 9. Confidence Intervals.  

3.2. Discussion 

The automated crop monitoring and 
irrigation system demonstrated promising results 
during the testing phase in the Indian farming 
scenario. By leveraging IoT technology, cloud 
computing, and predictive analytics, the system 
showcased its potential to revolutionize 
agricultural practices. With accurate monitoring of 
soil moisture, real-time access to data, and 
personalized recommendations, the system has 
the power to enhance crop management, optimize 
water usage, and improve overall productivity for 
Indian farmers. As the system moves from testing 
to implementation, its benefits have the potential 
to transform the agricultural landscape in India, 
empowering farmers and promoting sustainable 
farming practices. 

3.2.1 Analysis of the results 

The results indicate that the predictive 
model performs well in estimating the target 
variable, with predicted values closely resembling 
the actual observations. The consistency in 
predictions and the lack of statistically significant 
differences between actual and predicted values 
further support the model's accuracy and 
reliability. 

● The negligible difference between the 
means suggests that the predictive model 
is performing reasonably well in capturing 
the central tendency of the data. 

● The predictive model demonstrates 
consistency in its predictions, as can be 
seen from the lower standard deviation of 
the predicted values. 

● The calculation of confidence intervals 
show that while there is a slight 
discrepancy between the actual and 
predicted values, the difference is 
relatively small and not statistically 
significant based on the confidence 
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interval. Therefore, the predictive model 
appears to provide reasonably accurate 
estimates, with the predicted values 
closely aligning with the actual 
observations. 

3.2.2 Areas of improvement 

While the system has achieved positive 
results during the testing phase, there are several 
areas of future scope and potential improvements 
that can further enhance its effectiveness and 
address specific challenges faced by Indian 
farmers. 

1. One area of future scope lies in expanding 
the system's compatibility with different 
types of crops and farming practices. The 
system has been primarily tested with 
staple crops such as rice and wheat. To 
cater to the diverse agricultural landscape 
of India, it is crucial to include a wider range 
of crops, including fruits, vegetables, and 
cash crops. This expansion would require 
the development of crop-specific models 
and algorithms to provide accurate 
recommendations and predictions tailored 
to the specific needs of each crop. 

2. Another aspect that can be further explored 
is the integration of satellite imagery and 
remote sensing technologies into the 
system. By incorporating satellite data, 
farmers can gain valuable insights into 
larger factors influencing crop growth, such 
as land cover, vegetation indices, and 
temperature gradients. This integration 
would enable farmers to monitor crop 
conditions on a regional or even national 
scale, helping them make informed 
decisions about resource allocation and 
crop planning. 

3. Additionally, the system can benefit from 
the inclusion of pest and disease 
monitoring capabilities. Indian farmers face 
significant challenges in pest 
management, and early detection is crucial 
to minimize crop losses. The system can 
provide real-time alerts and 
recommendations for effective pest control 
measures by incorporating pest and 
disease monitoring sensors or leveraging 
image recognition technologies. This 
integration would empower farmers to take 
proactive measures and minimize the 
impact of pests on their crops. 

4. To enhance the system's effectiveness, 
addressing connectivity issues and 

ensuring reliable data transmission in 
remote and rural areas is essential. In 
India, where internet connectivity can be 
inconsistent, efforts should be made to 
develop offline functionalities for the mobile 
app. This would enable farmers to access 
crucial data and control features even in 
areas with limited or no internet 
connectivity. Additionally, exploring 
alternative communication technologies, 
such as low-power wide-area networks 
(LPWANs) (Chaudhari et al., 2020), can 
improve data transmission reliability in 
rural settings. 

5. The system's mobile app can be further 
enriched with additional features and 
functionalities to meet the diverse needs of 
Indian farmers. For instance, incorporating 
market prices and trends can help farmers 
make informed decisions about crop 
marketing and improve their profitability. 
Providing access to relevant agricultural 
resources, such as best practices, training 
materials, and weather advisories, can 
empower farmers with knowledge and 
support their decision-making processes. 

6. In terms of scalability, the system can 
explore partnerships with government 
agencies and agricultural cooperatives to 
reach a larger number of farmers. 
Collaborating with existing agricultural 
extension services can facilitate the 
adoption of the system among farmers and 
ensure effective dissemination of 
information and support. 

7. Moreover, continuous research and 
development efforts are necessary to 
refine the predictive models and algorithms 
used in the system. By incorporating 
machine learning and artificial intelligence 
techniques, the system can continually 
improve its accuracy in predicting crop 
yields, identifying optimal irrigation 
schedules, and providing personalized 
recommendations. This would require 
ongoing data collection, analysis, and 
refinement of the models to adapt to 
changing climatic conditions, crop 
varieties, and farming practices. 

 

3.2.3 Broader implications and practical 
applications 

The findings from the research have 
several broader implications and practical 
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applications in agriculture. 
 

1. Optimized Resource Allocation: 
Accurate crop yield predictions enable 
farmers and agricultural practitioners to 
allocate resources such as water, 
fertilizers, and pesticides more efficiently. 
Farmers can adjust input quantities to 
match the anticipated demand by knowing 
the expected yield in advance, reducing 
waste and minimizing costs. 
 

2. Risk Management: Reliable crop yield 
predictions help farmers mitigate risks 
associated with uncertain weather 
conditions, market fluctuations, and 
environmental factors. Farmers can make 
informed decisions regarding crop 
selection, planting schedules, and risk 
management strategies by having a 
clearer understanding of potential yield 
outcomes. 
 

3. Financial Planning and Decision 
Making: Crop yield predictions provide 
valuable insights for financial planning and 
decision-making processes. Farmers can 
use yield forecasts to estimate future 
revenues, negotiate contracts with buyers 
or suppliers, and secure financing for 
agricultural operations. This information is 
essential for budgeting, investment 
planning, and long-term sustainability. 
 

4. Research and Innovation: Findings from 
such research can contribute to ongoing 
research and innovation in agricultural 
science, data analytics, and technology 
development. Continuous refinement of 
predictive models, integration of new data 
sources, and advancements in machine 
learning and artificial intelligence empower 
stakeholders to make more accurate and 
timely predictions, driving improvements in 
crop productivity, resilience, and 
sustainability. 

 
4. CONCLUSIONS:  

 

The automated crop monitoring and 
irrigation system, powered by IoT technology, 
cloud computing, and data analytics, has the 
potential to revolutionize Indian farming. During 
testing, the system effectively monitored real-time 
soil moisture, temperature, humidity, and 
pressure, providing accurate field data for efficient 
irrigation management. Integration of weather 

predictions further improved water usage by 
aligning irrigation schedules with upcoming 
weather patterns. The accompanying mobile app 
offered farmers a user-friendly interface for 
monitoring and controlling the system, visualizing 
historical data, and receiving predictive analytics 
on crop yields. Future improvements include 
expanding compatibility with diverse crops, 
integrating satellite imagery and remote sensing 
technologies for broader insights, addressing 
connectivity challenges in rural areas, and 
enriching the system with features like pest 
monitoring and market information. Continuous 
research and development efforts are essential to 
refine predictive models and algorithms using 
machine learning and artificial intelligence 
techniques. By optimizing resource utilization and 
promoting sustainable farming practices, this 
system can empower farmers, improve their 
livelihoods, and contribute to a resilient and 
prosperous agricultural sector in India.  

The automated crop monitoring and 
irrigation system demonstrated promising results 
during the testing phase in the Indian farming 
scenario. By leveraging IoT technology, cloud 
computing, and predictive analytics, the system 
showcased its potential to revolutionize 
agricultural practices. With accurate monitoring of 
soil moisture, real-time access to data, and 
personalized recommendations, the system has 
the power to enhance crop management, optimize 
water usage, and improve overall productivity for 
Indian farmers. As the system moves from testing 
to implementation, its benefits have the potential 
to transform the agricultural landscape in India, 
empowering farmers and promoting sustainable 
farming practices. Analysis of the results indicates 
that the predictive model performs well in 
estimating the target variable, with predicted 
values closely resembling the actual observations. 
The consistency in predictions and the lack of 
statistically significant differences between actual 
and predicted values further support the model's 
accuracy and reliability. The negligible difference 
between the means suggests that the predictive 
model is performing reasonably well in capturing 
the central tendency of the data. The predictive 
model demonstrates consistency in its predictions, 
as can be seen from the lower standard deviation 
of the predicted values. The calculation of 
confidence intervals show that while there is a 
slight discrepancy between the actual and 
predicted values, the difference is relatively small 
and not statistically significant based on the 
confidence interval. Therefore, the predictive 
model appears to provide reasonably accurate 
estimates, with the predicted values closely 
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aligning with the actual observations. Areas of 
improvement for the system include expanding 
compatibility with different types of crops, 
integrating satellite imagery and remote sensing 
technologies, addressing connectivity issues in 
rural areas, incorporating pest and disease 
monitoring capabilities, enhancing the mobile app 
with additional features, and continuous 
refinement of predictive models through research 
and development efforts. The findings from such 
research have broader implications and practical 
applications in agriculture, including optimized 
resource allocation, risk management, financial 
planning, and decision-making, as well as 
opportunities for research and innovation to drive 
improvements in crop productivity, resilience, and 
sustainability. 

 

5. DECLARATIONS 
 

5.1. Study Limitations 

a) Limited crop compatibility: The system has 
been primarily tested with staple crops like 
rice and wheat. Its compatibility with a 
wider range of crops, including fruits, 
vegetables, and cash crops, is not 
explored, limiting its applicability across 
the diverse agricultural landscape of India. 

b) Connectivity challenges in rural areas: The 
manuscript does not address potential 
connectivity issues or limitations in remote 
and rural areas of India, where internet 
connectivity and data transmission 
reliability may be a concern. 

c) Limited data source for predictive analysis: 
The source of the historical weather data 
used for training and testing the predictive 
analysis model is not clearly stated, which 
could affect the generalizability of the 
model's performance. 

d) Lack of real-world testing and validation: 
The manuscript primarily focuses on the 
experimental setup and testing phase, but 
it does not provide information on real-
world deployment, validation, and 
feedback from farmers, which could help 
identify additional limitations or areas for 
improvement. 
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