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RESUMO  

 
Introdução: Os sistemas fotovoltaicos (PV) se tornaram uma tecnologia de energia renovável promissora para 
fontes de eletricidade. A estimativa de parâmetro PV desempenha um papel vital na modelagem de sistemas PV. 
Embora muitos algoritmos de otimização tenham sido apresentados para obter parâmetros de PV, ainda é um 
desafio investigar algoritmos de alto desempenho. Objetivo: Este estudo teve como objetivo propor um algoritmo 
de evolução diferencial adaptativa triangular (TADE) para fornecer uma estimativa precisa dos parâmetros de 
PV. Metodos: Célula PV RTC-France, módulo PV Photowatt-PWP 201 e módulo PV KC200GT foram usados 
como estudos de caso usando modelos de circuito de diodo. O erro quadrático médio (RMSE) entre os dados 
medidos e estimados foi adotado para definir as funções objetivo dos parâmetros de PV. Um teste de Friedman 
foi usado para avaliar a confiabilidade dos algoritmos. Os resultados da estimativa dos parâmetros foram 
verificados para confirmar a precisão dos desempenhos do algoritmo TADE. O módulo PV operando em várias 
condições climáticas também foi realizado para avaliar o algoritmo TADE. Resultados e Discussão: Os 
resultados verificaram que na maioria dos casos o algoritmo TADE superou outros algoritmos de otimização de 
última geração. Para o modelo de diodo duplo, o algoritmo TADE obteve os parâmetros da célula PV RTC-France 
com o valor RMSE de 9,8243x10-04, o mais preciso de todos os algoritmos. Os resultados experimentais também 
mostraram que o algoritmo TADE apresentou excelente capacidade e precisão na descoberta dos parâmetros 
PV e forneceu as melhores estimativas para dados experimentais I-V e P-V de células e módulos PV reais.. 
Conclusões:  Os resultados comprovaram que o algoritmo TADE tem um ótimo desempenho em termos de 
precisão, confiabilidade e velocidade de convergência para estimativa de parâmetros PV, mesmo em diferentes 
condições climáticas. 
 
Palavras-chave: convergência; curva corrente-tensão; modelo de diodo duplo; raiz quadrada média do erro; 
modelo de diodo único. 
 

ABSTRACT  
 
Background: Photovoltaic (PV) systems have become a promising renewable energy technology for electricity 
sources. The PV parameter estimation plays a vital role in modeling PV systems. Even though many optimization 
algorithms have been presented to obtain PV parameters, it is still challenging to investigate high-performance 
algorithms. Aim: This study aimed to propose a triangular adaptive differential evolution (TADE) algorithm to give 
a precise estimate of PV parameters. Methods: RTC-France PV cell, Photowatt-PWP 201 PV module, and 
KC200GT PV module were used as the case studies by using diode circuit models. The root mean square error 
(RMSE) between measured and estimated data was adopted to define PV parameter objective functions. A 
Friedman test was used to assess the reliability of algorithms. The parameter estimation results were cross-
checked to confirm the accuracy of TADE algorithm performances. The PV module operating under various 
weather conditions was also performed to evaluate the TADE algorithm. Results and Discussion: The results 
verified that in most of the cases, the TADE algorithm surpassed other state-of-the-art optimization algorithms. 
For the double-diode model, the TADE algorithm obtained the RTC-France PV cell parameters with the RMSE 
value of 9.8243x10-04, the most accurate of all algorithms. Experimental results also showed that the TADE 
algorithm presented an excellent capability and accuracy in discovering the PV parameters and provided the best 

estimates for I-V and P-V experimental data of real PV cells and modules. Conclusions:  The results have 
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proven that the TADE algorithm has a great performance in terms of accuracy, reliability, and 
convergence speed for estimating PV parameters, even in different weather conditions. 
 
Keywords: convergence; current-voltage curve; double-diode model; root mean square error; single-diode model.  
 

ABSTRAK  
 
Latar Belakang: Sistem fotovoltaik (PV) telah menjadi teknologi energi terbarukan yang menjanjikan sebagai 
sumber listrik. Estimasi parameter PV memainkan peran penting dalam pemodelan sistem PV. Meskipun telah 
banyak algoritma optimisasi telah dihadirkan untuk mendapatkan parameter PV, namun masih menantang untuk 
menemukan algoritma berkinerja tinggi. Tujuan: Penelitian ini bertujuan untuk mengusulkan algoritma evolusi 
diferensial adaptif segitiga (TADE) guna memberikan hasil estimasi yang teliti dari parameter PV. Metode: Sel 
PV RTC-France, modul PV Photowatt-PWP 201, dan modul PV KC200GT digunakan sebagai studi kasus dengan 
menggunakan model rangkaian dioda. Akar kuadrat rata-rata galat (RMSE) antara data yang diukur dan yang 
diperkirakan diadopsi untuk menentukan fungsi tujuan parameter PV. Tes Friedman digunakan untuk menilai 
reliabilitas algoritma. Hasil estimasi parameter diperiksa silang untuk memastikan keakuratan performa algoritma 
TADE. Modul PV yang beroperasi dalam berbagai kondisi cuaca juga dilakukan untuk mengevaluasi algoritma 
TADE. Hasil dan Diskusi: Hasil membuktikan bahwa di sebagian besar kasus, algoritma TADE melampaui 
algoritma optimisasi canggih lainnya. Untuk model dioda-ganda, algoritma TADE memperoleh parameter sel PV 
RTC-France dengan nilai RMSE = 9.8243x10-04, hasil yang paling akurat dari semua algoritma. Hasil eksperimen 
juga menunjukkan bahwa algoritma TADE memberikan kemampuan dan akurasi yang sangat baik dalam 
menemukan parameter PV dan memberikan estimasi terbaik untuk data eksperimen I-V dan P-V sel dan modul 
PV. Kesimpulan: Hasil penelitian telah membuktikan bahwa algoritma TADE memiliki performa yang bagus 
dalam hal akurasi, reliabilitas, dan kecepatan konvergensi untuk mengestimasi parameter PV, bahkan dalam 
beragam kondisi cuaca. 
 
Kata kunci: konvergensi; kurva arus-tegangan; model dioda-ganda; galat akar rata-rata kuadrat; model dioda-
tunggal.  
  

 

1. INTRODUCTION:  
   
 An accurate estimation of photovoltaic 
(PV) parameter values is very important to the 
design and performance assessment of PV 
systems. These parameters consist of 
photogenerated current, saturation current, diode 
ideality factor, and series and shunt resistances 
(Anani and Ibrahim, 2020).  

 The PV cells and modules are generally 
characterized by current (I)-voltage (V) and power 
(P)-voltage (V) curves. The PV parameters affect 
the I-V and P-V behavior of PV cells and modules, 
which change in electrical voltage, current, and 
power due to solar irradiance and temperature 
variations. As the output power of the PV cells and 
modules is dependent on solar irradiance and 
temperature, with knowing the PV parameters, 
engineers can design appropriate PV systems to 
operate under a variety of atmospheric conditions. 
It is also useful for the maintenance and 
monitoring operation of PV systems (Bosman et 
al., 2020) and testing maximum power point 
tracking (MPPT) algorithms (Motahhir et al., 2018) 
under various conditions and control of PV 
systems (Jordehi, 2016a). 

The current-voltage curve of PV cells 
exhibits nonlinear and multivariable 

characteristics. The power delivered by PV cells 
and modules is the product of current and voltage. 
The P-V curve is obtained by multiplicating current 
and voltage, point for point, for all currents and 
voltages from open-circuit to short-circuit 
conditions. The estimation of the I-V and P-V 
curves can be conducted using online and offline 
measuring methods. The advantage of online 
measurement is its ability to measure real I-V and 
P-V characteristics based on site-specific 
conditions. However, the online measuring 
method is costly and requires long-term 
continuous monitoring (Zhu et al., 2017). 

On the other hand, the offline 
measurement for determining I-V and P-V curves 
is fast and accurate but cannot diagnose faults in 
PV systems. Therefore, PV cell models are 
necessary to extract the I-V and P-V 
characteristics offline. There are two PV cell 
models widely employed to represent the current-
voltage relationship, such as the single-diode 
model (SDM) (Muhammadsharif et al., 2019; 
Arabshahi et al., 2020) and the double-diode 
model (DDM) (Khotbehsara and Shahhoseini, 
2018). The SDM has five unknown parameters, 
while the DDM contained seven parameters to be 
estimated. The SDM is usually used in the 
estimation of PV parameters because of its 
simplicity. Yet, the DDM is considered to be more 
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accurate than the SDM, particularly in a low solar 
irradiance condition. The DDM also requires a 
longer running time than the SDM to perform the 
computational process (Abbassi et al., 2019). 
However, both SDM and DDM need detailed 
information of all unknown parameters, which is 
generally not given by PV manufacturers. Besides, 
PV manufacturers still do not introduce any 
methods of extracting the PV parameters. 

Many methods have been evolved to 
compute the PV parameters from the models. 
There are three techniques generally utilized to 
optimize the PV parameters, namely: analytical, 
numerical, and algorithmic through 
metaheuristics. The analytical approach is 
practically possible for solving the PV parameters 
problem. The analytical method has fast 
computation speed and gives relatively accurate 
results. However, the analytical method becomes 
very difficult and requires too much computational 
time to solve complex and large-sized problems. 
The analytical method has been used to compute 
PV parameters, such as Padé approximant (Lun 
et al., 2013a), Taylor's Series Expansion (Lun et 
al., 2013b), and Lambert W-function (Gao et al., 
2016; Chen et al., 2018a). The numerical method 
is usually more accurate than the analytical 
process because it employed all the I-V curve 
points. The numerical method based on the 
Newton-Raphson iteration (Ghani et al., 2014; 
Rodrigues et al., 2018) or Gauss-Seidel (Et-torabi 
et al., 2017) may converge to optimal values. The 
drawbacks of the numerical method that it needs 
extensive computational resources and will be 
susceptible to being nonconvergent if the search 
space is not convex. In order to overcome these 
inconveniences, metaheuristics algorithms have 
been developed to optimize the PV parameters. 
The metaheuristics algorithms have attracted 
more and more attention among the computational 
methods due to their effectiveness in solving 
complex problems. In the metaheuristic 
algorithms, the objective function and constraints 
do not rely on strict convexity, continuity, and 
differentiability. Moreover, the metaheuristic 
algorithms have better performance than 
numerical and analytical methods concerning 
accuracy, reliability, and convergence speed 
(Pillai and Rajasekar, 2018). Along with the 
development of the metaheuristic algorithms, they 
have been popular in determining the PV 
parameters for the last decade, for instance, 
Genetic Algorithm (GA) (Ismail et al., 2013), 
Differential Evolution (DE) (Yang et al., 2013), 
Particle Swarm Optimization (PSO) (Soon and 
Low, 2012), and Simulated Annealing (SA) (El-
Naggar et al., 2012). Other recent metaheuristic 

algorithms working on estimating the PV 
parameters are Supply-Demand-Based 
Optimization (SDO) (Xiong et al., 2019), Chaotic 
Optimization Approach (COA) (Ćalasan et al., 
2019), Symbiotic Organisms Search (SOS) (Xiong 
et al., 2018), and population classification 
evolution (PCE) (Zhang et al., 2016). 

Every algorithm has its own advantages 
and disadvantages. GA has the ability to avoid 
being trapped in the local optimum because it 
searches from parallel points. However, GA has a 
slow convergence process. DE is robust, but it 
requires the appropriate parameter settings to 
ensure the success of the algorithm. On the other 
hand, PSO is fast, but it is easy to fall into the local 
optimum in high-dimensional space. SA is known 
for its flexibility and ability to approach global 
optimum, but it needs much computational effort. 
For this reason, a single metaheuristic algorithm 
can be modified to improve its performance as in 
(Lin et al., 2017; Yu et al., 2017a; Chen et al., 
2018b; Kang et al., 2018; Gao et al., 2018; Li et 
al., 2019a; Yu et al., 2019; Chen et al., 2019a; 
Pourmousa et al., 2019; Liao et al., 2020;). 
Another way to enhance the metaheuristic 
algorithm performance is hybridization with other 

algorithms as in (Jordehi, 2016b; Oliva et al., 

2017; Chen et al., 2017; Yu et al., 2017b; Beigi 
and Maroosi, 2018; Li et al., 2019b; Chen et al., 

2019b; Chen et al., 2019c; Long et al., 2020). 
More often, two or more other metaheuristic 
algorithms are combined to create a single hybrid 
one. Hybridization is usually done to incorporate 
each of the desired features so that the overall 
algorithm becomes better than the single 
algorithm. It must be noted that a particular 
algorithm cannot very successfully deal with all 
problems. The algorithm may be very effective at 
solving one engineering problem, but it does not 
mean that the algorithm will also successfully deal 
with other engineering problems. For this reason, 
researchers utilize various kinds of algorithms to 
determine the most suitable one to solve a 
problem. 

The objective function of the PV parameter 
optimization problem is conducted to minimize the 
difference between experimental and estimated 
data, which is stated as the root mean square error 
(RMSE). The RMSE has been commonly used as 
a standard statistical parameter to measure the 
performance of metaheuristic algorithms. 
However, the RMSE results reported by many 
metaheuristic algorithms presented in the 
literature do not fit with the objective function 
(Gnetchejo et al., 2019). The RMSE values are not 
calculated correctly since the estimated PV output 



Periódico Tchê Química.  ISSN 2179-0302. (2021); vol.18 (n°37) 
Downloaded from www.periodico.tchequimica.com 

  92 

current is incorrect (Ćalasan et al., 2019). In order 
to be careful about the accuracy, the results 
should be cross-checked. 

This study aimed to propose a triangular 
adaptive differential evolution (TADE) algorithm to 
estimate parameters from PV cells and modules 
and evaluate their I–V and P-V characteristics. 

  

2. MATERIALS AND METHODS:   
   

Four case studies were carried out to 
assess the performance of the TADE algorithm. In 
the first and second cases, SDM and DDM were 
implemented to estimate the RTC-France PV cell 
parameters under irradiance and temperature 
about 1000 W/m2 and 33˚C, respectively. The 
experimental data consisted of 26 pairs of voltage 
and current values extracted from the 
experimental data in (Ma., 2014). In the third case, 
PMM was applied to estimate the Photowatt-
PWP201 PV module parameters, which had 36 
series-connected polycrystalline silicon cells 
under the irradiance and temperature of about 
1000 W/m2 and 45˚C, respectively. The 
experimental data contained 25 pairs of voltage-
current values were obtained from (Ma., 2014). 
The last case referred to the KC200GT PV 
module, which consisted of 54 series connected 
polycrystalline silicon cells. The experimental data 
of the KC200GT PV module were obtained under 
varied environmental measurements. 

 
2.1. Photovoltaic Model and Problem Formulation 

 
In this section, the single-diode model 

(SDM), the double-diode model (DDM), the 
photovoltaic module model (PMM), and the 
problem formulation were represented. The PV 
cells and modules equivalent circuits can be 
described by using a current source with diodes 
connected in series or parallel, one resistor 
connected in series, and the other resistor 
connected in parallel. 

  
2.1.1 Single-Diode Model  

 
 The electrical equivalent circuit of SDM for 
PV cells is illustrated in Figure 1. The SDM 
consists of a current source, diode, series 
resistance, and shunt resistance. The current 
source (IPV) is a photogenerated current. The 
current flowing through the diode (ID) is the 
diffusion current produced by the majority carrier 
(Hejri et al., 2014). The series resistance (RS) is 
the internal resistance that causes voltage drops 

and power losses when current is flowing, while 
the shunt resistance (RP) is the resistance due to 
leakage current in the junction of p-n PV cells. The 
diffusion current can be calculated as follows:  
 

𝐼𝐷 = 𝐼𝑂 {exp [
(𝑉+𝐼𝑅𝑆)

A𝑉𝑇𝐻
] −  1}            (Eq. 1) 

 
According to the equivalent circuit in Figure 

1, the output current and power of the PV cell in 
SDM are expressed as follows (Wolf et al., 1977): 

 

𝐼 = 𝐼𝑃𝑉 − 𝐼𝑂 {exp [
(𝑉+𝐼𝑅𝑆)

A𝑉𝑇𝐻
] −  1} − 

𝑉+𝐼𝑅𝑆

𝑅𝑃
       (Eq. 2) 

 

𝑃 = {𝐼𝑃𝑉 − 𝐼𝑂 {exp [
(𝑉+𝐼𝑅𝑆)

A𝑉𝑇𝐻
] −  1} −  

𝑉+𝐼𝑅𝑆

𝑅𝑃
} 𝑉  

                   (Eq. 3) 
 
In Equations (2) and (3), IPV is the photogenerated 
current, IO is the reverse saturation current, A is 
the ideality factor, V is the PV output voltage, I is 
the PV output current, and VTH is the thermal 
voltage. The thermal voltage is depicted by 
 
𝑉𝑇𝐻 = 𝑁𝑆𝑘𝑇/𝑞              (Eq. 4) 
 
where NS is the number of PV cells connected in 
series, k is the Boltzmann constant (k = 1.38E-23 
J/K), q is the electron charge (q = 1.6E-19 C), and 
T is the absolute temperature of the PV cell 
measured in Kelvin. 

In the SDM, the five parameters, i.e., IPV, IO, 
RS, RP, and A, are considered as unknown 
parameters to be estimated. 

 

 
 

Figure 1. The equivalent circuit for the single-
diode model 

 
2.1.2 Double-Diode Model  

 
Unlike the SDM, the DDM has two diodes 

in the equivalent circuit, as shown in Figure 2. In 
the DDM, the recombination current is taken into 
account (Fuchs and Sigmund, 1986). The diffusion 
current due to majority carrier (ID1) and the 
recombination current due to minority carrier (ID2) 
can be calculated as follows: 
 

𝐼𝐷1 = 𝐼𝑂1 {exp [
(𝑉+𝐼𝑅𝑆)

𝐴1𝑉𝑇𝐻
] −  1}            (Eq. 5) 

IPV
ID IP

RP

RS

D

+

_

I

V
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𝐼𝐷2 = 𝐼𝑂2 {exp [
(𝑉+𝐼𝑅𝑆)

𝐴2𝑉𝑇𝐻
] −  1}            (Eq. 6) 

 
In Equations (4) and (5), IO1 and IO2 are 

respectively reverse saturation currents due to the 
diffusion and the recombination phenomenon. The 
diffusion and recombination ideality factors are 
denoted by  A1 and A2, respectively. Thus, the 
output current is as follows: 
 

𝐼 = 𝐼𝑃𝑉 − 𝐼𝑂1 {exp [
(𝑉+𝐼𝑅𝑆)

𝐴1𝑉𝑇𝐻
] −  1} −

𝐼𝑂2 {exp [
(𝑉+𝐼𝑅𝑆)

𝐴2𝑉𝑇𝐻
] −  1} − 

𝑉+𝐼𝑅𝑆

𝑅𝑃
           (Eq. 7) 

 
The power generated by the PV cell is 

 

𝑃 = {𝐼𝑃𝑉 − 𝐼𝑂1 {exp [
(𝑉+𝐼𝑅𝑆)

𝐴1𝑉𝑇𝐻
] −  1} −

𝐼𝑂2 {exp [
(𝑉+𝐼𝑅𝑆)

𝐴2𝑉𝑇𝐻
] −  1} − 

𝑉+𝐼𝑅𝑆

𝑅𝑃
} 𝑉           (Eq. 8) 

 
Hence, for the DDM, seven unknown parameters 
must be estimated, i.e., IPV, IO1, IO2, RS, RP, A1, and 
A2. 
 

 
 

Figure 2. The equivalent circuit for the double-
diode model 

 
2.1.3 Photovoltaic Module Model  
 

A PV module is constructed by a sufficient 
number of PV cells, which are connected in series 
and parallel to increase the level of output power. 
Figure 3 presents the equivalent circuit of a PV 
module. The output current for the PMM is 

expressed as: 
 

𝐼 = 𝑁𝑃𝐼𝑃𝑉 − 𝑁𝑃𝐼𝑂 {exp [
(𝑉+𝐼𝑅𝑆(𝑁𝑆/𝑁𝑃))

A𝑉𝑇𝐻𝑁𝑆
] −  1} −

 
𝑉+𝐼𝑅𝑆(𝑁𝑆/𝑁𝑃)

𝑅𝑃(𝑁𝑆/𝑁𝑃)
              (Eq. 9) 

 
The power output of the PV module is 

 

𝑃 = {𝑁𝑃𝐼𝑃𝑉 − 𝑁𝑃𝐼𝑂 {exp [
(𝑉+𝐼𝑅𝑆(𝑁𝑆/𝑁𝑃))

A𝑉𝑇𝐻𝑁𝑆
] −  1} −

 
𝑉+𝐼𝑅𝑆(𝑁𝑆/𝑁𝑃)

𝑅𝑃(𝑁𝑆/𝑁𝑃)
} 𝑉           (Eq. 10) 

 
where NP denotes the number of PV cells in 
parallel and NS  is the number of PV cells in series. 

 For simplicity, Equations. (9) and (10) can 
be rewritten as 
 

𝐼 = 𝐼𝑃𝑉𝑀 − 𝐼𝑂𝑀 {exp [
(𝑉+𝐼𝑅𝑆𝑀)

𝐴𝑀𝑉𝑇𝐻
] −  1} − 

𝑉+𝐼𝑅𝑆𝑀

𝑅𝑃𝑀

                  (Eq. 11) 
 

𝑃 = {𝐼𝑃𝑉𝑀 − 𝐼𝑂𝑀 {exp [
(𝑉+𝐼𝑅𝑆𝑀)

𝐴𝑀𝑉𝑇𝐻
] −  1} −  

𝑉+𝐼𝑅𝑆𝑀

𝑅𝑃𝑀
} 𝑉

             (Eq. 12) 
 
where IPVM = NPIPV, IOM = NPIO, RSM = (NS/NP)RS, 
RPM = (NS/NP)RP, AM = NSA. 

Considering the PMM, five unknown 
parameters, i.e., IPVM, IOM, RSM, RPM, and AM, are 
estimated according to the I-V data of real PV 
modules. 

 

 
 

Figure 3. The equivalent circuit for the 
photovoltaic module model 

 
2.1.4 Problem Formulation  

 
The parameters of PV cells and modules 

are unknown and variable with temperature and 
solar irradiance (Chaibi et al., 2019). Thus, the 
estimation of PV parameters can be represented 
as an optimization problem, aiming to minimize the 
difference between the measured and the 
estimated I-V data. The problem here is defined as 
an objective function used for the optimization 
process.  

In this study, the RMSE method is applied 
to describe objective functions. The RMSE 
method compares the difference between the 
measured and the estimated values. The RMSE 
for the photovoltaic problem is expressed as 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ [𝑓𝑗(𝑉, 𝐼, ∅)]

2𝑁
𝑗=1           (Eq. 13) 

 

𝑓𝑗(𝑉, 𝐼, ∅) = 𝐼𝑗 − 𝐼𝑒𝑠𝑡𝑗          (Eq. 14) 

 
where N is the number of measured I-V data 
points, V and I are the measured voltage and 
current, respectively, and ∅ is a vector containing 
the parameters to be calculated.  

The difference between the measured 

IPV
ID1 ID2 IP

RP

RS

D1 D2

+

_

I

V

IPV
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+

_
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current (I) and the estimated current (Iest) at a point 
of the I-V curve is an individual error (IE), which is 
defined by the error function (f (V, I, ∅)).  

The estimated current of the SDM is then 
formulated as 

 

𝐼𝑒𝑠𝑡 = 𝐼𝑃𝑉 − 𝐼𝑂 {exp [
(𝑉+𝐼𝑅𝑠)

A𝑉𝑇𝐻
] −  1} − 

𝑉+𝐼𝑅𝑠

𝑅𝑝
  

             (Eq. 15) 
 

For the DDM, the estimated current is 
 

𝐼𝑒𝑠𝑡 =   𝐼𝑃𝑉 − 𝐼𝑂1 {exp [
(𝑉+𝐼𝑅𝑠)

A1𝑉𝑇𝐻
] −  1} −

  𝐼𝑂2 {exp [
(𝑉+𝐼𝑅𝑠)

A2𝑉𝑇𝐻
] −  1} −

𝑉+𝐼𝑅𝑠

𝑅𝑝
         (Eq. 16) 

 
and the estimated current for the PMM is defined 
as 
 

𝐼𝑒𝑠𝑡 =   𝐼𝑃𝑉𝑀 − 𝐼OM {exp [
(𝑉+𝐼𝑅𝑆𝑀)

𝐴𝑀𝑉𝑇𝐻
] −  1} −

𝑉+𝐼𝑅𝑆𝑀

𝑅𝑃𝑀

             (Eq. 17) 
 
The error functions of the SDM, DDM, and PMM 
are summarized in Table 1. 

 
2.2. Triangular Adaptive Differential Evolution 
Algorithm 

 
Differential evolution (DE) is a population-

based stochastic optimization algorithm. The 
advantages of the DE are (Ridha et al., 2020): a) 
it can increase the search space capacity, b) it can 
find the optimal minimum from a multi-model 
search, and c) it has a robust mutation scheme. 
This evolution algorithm utilizes two control 
parameters, i.e., the mutation factor (F) and the 
crossover rate (CR). These two parameters 
control perturbance and enhance the convergence 
speed of the computation process. The triangular 
adaptive differential evolution (TADE) algorithm 
employs a triangular probability distribution and a 
population reduction strategy to improve the 
convergence speed during the evolution process 

  
2.2.1 Initialization and Evaluation 
 
 The first step in the DE optimization 
process is initialized by randomly generating an 
initial population as the candidate solutions within 
defined boundaries. Such candidates must lie 
inside the feasible lower and upper bounds. If the 
population size is NP and the dimension of the 
problem is D, the initialization is assigned by 
 

𝑥𝑖,𝑗
(𝐺=1) =   𝑥𝑚𝑖𝑛𝑗 + 𝑟𝑎𝑛𝑑𝑗(𝑥𝑚𝑎𝑥𝑗 − 𝑥𝑚𝑖𝑛𝑗) (Eq. 18) 

 
where xi,j

(G=1) is the initial population at generation-
1, xminj  and xmaxj are the lower and upper bounds 

of the individuals, and randj  [0, 1], j = 1, 2, …, D; 
i = 1, 2, …, NP.  

 Evaluation of the population is employed to 
find which individuals of the current population will 
be the best candidates to satisfy the fitness value. 
The best individuals are selected by using 
 

𝑓𝑏𝑒𝑠𝑡𝑗
(𝐺)

=   𝑓(𝑥𝑏𝑒𝑠𝑡𝑗
(𝐺)), 𝑥𝑏𝑒𝑠𝑡𝑗

(𝐺) ∈ 𝑥𝑖,𝑗
(𝐺)  (Eq. 19) 

 
2.2.2 Parameter Adaptation 

 
 The control parameters at generation G, 
i.e., Fi

(G) and CRi
(G), are adapted by applying 

triangular probability distribution as follows: 
 

if randj <  
 

𝛼𝑖
(𝐺) = 𝛼𝑚𝑖𝑛 + [𝑟𝑎𝑛𝑑𝑗(𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)(𝛼𝑚𝑜𝑑 −

𝛼𝑚𝑖𝑛)]
0.5

                 (Eq. 20) 

 
otherwise, 
 

𝛼𝑖
(𝐺) = 𝛼𝑚𝑎𝑥 − [(1 − 𝑟𝑎𝑛𝑑𝑗)(𝛼𝑚𝑎𝑥 −

𝛼𝑚𝑖𝑛)(𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑜𝑑)]
0.5

          (Eq. 21) 

 
where, 
 
𝜏 =  (𝛼𝑚𝑜𝑑 − 𝛼𝑚𝑖𝑛)/(𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)         (Eq. 22) 
 

The probability distribution within [0,1] is 
determined by using three values, i.e., the lower 
limit (αmin), the mode (αmod), and the upper limit 
(αmax). In this case,  αmin ≤ αmod ≤ αmax.  

 
2.2.3 Mutation, Crossover, and Selection 
 

The mutation operation creates mutant 
individuals vi,j

(G) by perturbing randomly selected 
individuals with the difference between the two 
other randomly selected individuals. The TADE 
algorithm adopts the "DE/rand/2" mutation 
strategy, which is defined as: 
 

𝑣𝑖,𝑗
(𝐺) =  𝑥𝑟1,𝑗

(𝐺) + 𝐹𝑖
(𝐺)(𝑥𝑟2,𝑗

(𝐺) − 𝑥𝑟3,𝑗
(𝐺)) +

𝐹𝑖
(𝐺)(𝑥𝑟4,𝑗

(𝐺) − 𝑥𝑟5,𝑗
(𝐺))           (Eq. 23) 

 
In the mutation process, the indices r1, r2, 

r3, r4, and r5 are taken randomly from [1, NP]. The 
integers i, r1, r2, r3, r4, and r5, are randomly 
chosen mutually exclusive integers and must be 
different from each other and also different from 
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the base index i. 

The crossover operation increases the 
diversity of the mutant individual by generating trial 
individuals ti,j(G). TADE employs a binomial 
crossover strategy, which is expressed as: 

 

𝑡𝑖,𝑗
(𝐺) =   {

𝑣𝑖,𝑗
(𝐺), 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅𝑖

(𝐺))𝑜𝑟(𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑖,𝑗
(𝐺), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (Eq. 24) 
 

where i = 1,2,…,NP, j = 1,2,…,D, and jrand is a 

randomly chosen number  {1,2,…,D} that 
guarantees ti,j(

G) to get at least one parameter from 
vi,j

(G). 

Finally, the selection process compares 
the fitness values of the parents and trial 
individuals. The trial individuals are accepted for 
the next generation if and only if they have equal 
or lower fitness value than their parents. The 
selection operation is represented as: 
 

𝑥𝑖,𝑗
(𝐺+1) =   {

𝑡𝑖,𝑗
(𝐺), 𝑖𝑓 𝑓(𝑡𝑖,𝑗

(𝐺)) ≤ 𝑓(𝑥𝑖,𝑗
(𝐺))

𝑥𝑖,𝑗
(𝐺), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

             (Eq. 25) 
 
The best individuals are also selected here as 
 

𝑓𝑏𝑒𝑠𝑡𝑗
(𝐺+1)

=  𝑓(𝑥𝑏𝑒𝑠𝑡𝑗
(𝐺+1)), 𝑥𝑏𝑒𝑠𝑡𝑗

(𝐺+1) ∈ 𝑥𝑖,𝑗
(𝐺+1)

                    (Eq. 26) 
 
2.2.4 Population Size Reduction Strategy 
 

In the DE algorithm, the population size NP 
is constant throughout the evolution process. In 
order to enhance the convergence rate of the 
TADE algorithm, a population size reduction 
strategy is applied to improve the exploitation and 
exploration processes. The population size 
reduction strategy is dynamically resizing the 
population during the evolution process [63]. After 
each generation G, the next-generation population 
size, NP(G+1), is computed according to the 
formula: 

 

𝑁𝑃(𝐺+1) =  𝑟𝑜𝑢𝑛𝑑 [(
𝑁𝑃𝑚𝑖𝑛−𝑁𝑃(𝐺)

𝑀𝑁𝐹𝐸
) 𝑁𝐹𝐸 + 𝑁𝑃(𝐺)]

                  (Eq. 27) 
 
where NP(G=1) is the population size at generation 
1 is, NPmin is the population size at the end 
evolution process, NFE is the number of fitness 
evaluations, and MNFE is the maximum NFE. The 
value of NPmin is set to the smallest possible value 
such that the evolutionary operator is usable. In 
the case of TADE, NPmin is set to 5 due to the 

"DE/rand/2" mutation strategy in this study 
requires five individuals. Whenever NP(G+1) < 
NP(G), the (NP(G) – NP(G+1)) individuals with worse 
fitness values are eliminated from the population. 
The steps involved in the TADE algorithm are 
tabulated in Algorithm 1. 

 
3. RESULTS AND DISCUSSION:   
   
3.1. Estimation of the Parameters of the RTC-
France PV Cell 

 
The SDM has five parameters to be 

determined. The typical design space of 
photogenerated current (IPV), reverse saturation 
current (IO), ideality factor (A), series resistance 
(RS), and shunt resistance (RP), are chosen to be 
within the range {0, 1} A, {0, 1} µA, {1, 2}, {0, 0.5} 
Ω, and {0, 100} Ω, respectively.  

For the SDM, the performance results of 
TADE are compared with those of TLABC (Chen 
et al., 2018a), IJAYA (Yu et al., 2017a), GWOCS 
(Long et al., 2020), SATLBO (Yu et al., 2017b), 
DE, and TADE. The experimental results are 
obtained after 30 independent runs. Table 2 
represents the estimated parameters of six distinct 
algorithms with their best, worst, mean, and 
standard deviation values of RMSE, respectively. 
Additionally, the MNFE of the convergence 
processes is also shown in the last row of Table 2. 
It should be noted that the lower the RMSE value, 
the more precise the estimation results of these 
PV parameters will be. Moreover, the low standard 
deviation indicates high reliability, while the mean 
value of RMSE quantifies the average accuracy of 
the algorithm. 

From the results in Table 2, according to 
their best values of RMSE, all SATLBO, TLABC, 
DE, and TADE achieve the best result (i.e., 
9.8602x10-04), followed by GWOCS (i.e., 
9.8607x10-04) and IJAYA (i.e., 9.8603x10-04). Both 
IJAYA and GWOCS obtain slightly higher best 
values of RMSE. Considering the standard 
deviation, mean, and worst of RMSE, TADE 
outperforms the other five algorithms. It is also 
observed that DE and TADE need less MNFE 
compared to different algorithms. 

The convergence of the six compared 
algorithms for the SDM is presented in Figure 4. 
This figure clearly shows that TADE gives the 
fastest convergence performance, subsequently 
DE, GWOCS, IJAYA, TLABC, and SATBLO. The 
TADE and DE algorithms require less than 10000 
and 20000 NFEs to reach their best RMSE, 
respectively. Figure 4 also shows that GWOCS, 
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TLABC, SATLBO, and IJAYA converge after 
20000 number of function evaluations. Both 
GWOCS and IJAYA perform faster convergence 
than TLABC and SATLBO. But on the other hand, 
TLABC and SATLBO can find more accurate 
RMSE values than GWOCS and IJAYA. 

 

 
 

Figure 4. Convergence processes of the six 
algorithms for the RTC-France PV cell (SDM) 

 
Further investigations were carried out to 

assess the quality of estimated parameters and 
avoid inaccuracies in the TADE results.  The 
estimated parameter values of the SDM, i.e., IPV, 
IO, A, RS, and RP, are entered into Equation (13). 
For TADE, the values of parameters found are IPV 
= 0.76077553 A, IO = 0.32302083x10-06 A, RS = 
0.03637709 Ω, RP = 53.71852506 Ω, and A = 
1.48118360. The RMSE result is 9.860219x10-04, 
and this matches correctly.  

Table 3 lists the RMSE value obtained by 
the TADE compared with other algorithms. It is 
seen that the RMSE value of the TADE algorithm 
is 9.860219x10-04, and this value is as small as 
most of the algorithms, but in the different 
significant digits. However, the RMSE of the TADE 
algorithm is smaller than the RMSE values of 
SOS, MSSO, MABC, BLPSO, and GOTLBO. It is 
also seen that the BLPSO algorithm has the worst 
result, which the RMSE is 11.239x10-04. 

The individual abs(error) (IAE) and I-V and 
P-V curves between the measured and the 
estimated data over the entire voltage range are 
presented in Table 4 and Figure 5. Table 4 exhibits 
the measured and estimated currents and powers 
for the RTC-France PV cell at 26 different working 
conditions. The individual abs(error) values 
describe the error between the measured and the 
calculated data. The small IAE indicates the 
excellent estimated data. As seen in Table 4 and 
Figure 5(b), the values of individual abs(error) of 
current are less than 0.003 Ampere, while the 

values of individual abs(error) of power are less 
than 0.002 Watt. With these low errors, the 
measured data gained by TADE fits perfectly into 
the estimated data of the RTC-France PV cell, as 
shown in Figure 5(a). Table 4 and Figure 5 show 
that the PV parameters estimated by TADE have 
pretty good accuracy. 

 
 

Figure 5. Estimated and measured data of SDM: 
(a) I-V/P-V curves, (b) Individual abs(error) 

 

In the second case, the parameter 
estimation of the RTC-France PV cell was carried 
out by using DDM. The DDM has seven 
parameters to optimize. Increasing the number of 
parameters will increase the difficulty level of the 
parameter estimating process. In this case, the 
typical design space of IPV, Io1, Io2, A1, A2, RS, and 
RP, are specified within the range {0, 1} A, {0, 1} 
µA, {0, 1} µA, {1, 2}, {1, 2}, {0, 0.5} Ω, and {0, 100} 
Ω, respectively. Table 5 shows the estimated 
parameters and the RMSE values. The results 
acquired by TLABC, IJAYA, GWOCS, SATLBO, 
DE, and TADE are considered for comparison. 
Similar to the previous case, the results in Table 5 
are obtained after 30 independent runs. 

It is seen from Table 5 that the best value 
of RMSE obtained by TADE is as low as 



Periódico Tchê Química.  ISSN 2179-0302. (2021); vol.18 (n°37) 
Downloaded from www.periodico.tchequimica.com 

  97 

9.8243x10-04. The TADE algorithm also performs 
the best result in terms of the mean, standard 
deviation, and worst RMSE. It verifies that TADE 
is the most accurate among the algorithms being 
compared. It is also observed in Table 5 that both 
DE and TADE require less MNFE compared to 
other algorithms. Tables 2 and 5 show that TADE 
gives the best precision and reliability on both 
SDM and DDM on account it outperforms the five 
different algorithms regarding the best, worst, 
mean, and standard deviation of the RMSE. It is 
further observed that, as expected, the best RMSE 
values obtained in the DDM case are smaller than 
the value obtained for the SDM case. It is noted 
that DDM should estimate the unknown PV 
parameters more accurately than SDM. 

To verify the convergence speed of the 
TADE algorithm, Figure 6 exhibits the 
convergence processes of six algorithms. The 
TADE performs the fastest convergence speed, 
and then subsequently DE, TLABC, IJAYA, 
GWOCS, and SATLBO. The TADE needs less 
than 20000 function evaluations to reach the best 
RMSE, which is the fastest convergence process 
of all the algorithms, as shown in Table 5 and 
Figure 6. Other algorithms converge after 20000 
NFEs. Figure 6 also demonstrated that DE and 
TLABC converge much faster than GWOCS and 
SATLBO. Although it has the slowest convergence 
speed of all, SATLBO can achieve the best RMSE 
accuracy, which is better than other algorithms, 
except TADE. 

The PV parameters found must fit the 
RMSE. In order to avoid inaccuracies occurred in 
the results, the estimated parameters can be 
cross-checked by using Equation (13). The 
parameters are IPV = 0.76077887 A, IO1 = 
0.57982851x10-06 A, IO2 = 0.26238944x10-06 A, RS 
= 0.03661196 Ω, RP = 54.88852821 Ω, A1 = 
2.06856333, and A2 = 1.46322217. The RMSE 
result is 9.824321x10-04. This value matches the 
RMSE value found by the TADE algorithm very 
well. 

A deeper investigation of the DDM of RTC-
France PV cell found that the RMSE value can be 
as small as 9.727248x10-04 if the search range of 
A1 is within {1, 3}. It is observed that the 
corresponding parameters with the RMSE of 
9.727248x10-04 are: IPV = 0.760777759 A, IO1 = 
6.92409709x10-06 A, IO2 = 0.260629884x10-06 A, 
RS = 0.036751455 Ω, RP = 57.63085158 Ω, A1 = 
2.931617412, and A2 = 1.461203635. It is noted 
that for this RMSE value, A1 = 2.931617412 is in 
the search range of {1, 3}. The estimated RMSE 
values of the DDM for TADE and other recent 
algorithms from literature are also summarized in 

Table 6. It is seen that TADE gives the RMSE 
value of 9.824321x10-04, and this is the most 
accurate RMSE value among all compared 
algorithms. These results prove that TADE yields 
the highest accuracy in estimating the PV 
parameters of the DDM. By comparing Tables 3 
and 6, as expected, it is also observed that TADE 
performance for DDM is better than for SDM. 

 
 

Figure 6. Convergence processes of the six 
algorithms for the RTC-France PV cell (DDM) 

 
Table 7 and Figure 7 show the individual 

abs(error) values and the I-V / P-V curves obtained 
by the TADE algorithm. Table 6 represents the 
measured and estimated currents and powers for 
the RTC-France PV cell at 26 different working 
conditions. As shown in Table 7 and Figure 7(b), 
the individual abs(error) values are less than 0.003 
and 0.02 for current and power, respectively.  

It indicates that the estimated data are 
reasonably very close to the measured data, 
meaning that TADE has an excellent capability in 
estimating parameters of DDM. The measured 
and calculated data are in perfect agreement, as 
shown in Figure 7(a). These confirm the high 
accuracy of the TADE algorithm for the PV 
parameter estimation of DDM. 

3.2. Estimation of the Parameters of the Photowatt-
PWP-201 PV Module 

 
The PMM has five parameters to be 

determined. The typical range of IPVM, IOM, AM, RSM, 
and RPM for Photowatt-PWP 201 PV module are 
defined by {0, 2} A, {0, 50} µA, {1, 50}, {0, 2} Ω, 
and {0, 2000} Ω, respectively. Similar to the 
previous cases, estimating the Photowatt-PWP 
201 PV module parameters is carried out by using 
six compared algorithms, i.e., TLABC, IJAYA, 
GWOCS, SATLBO, DE, and TADE. The results 
are obtained after 30 independent runs and 
tabulated in Table 8. 
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Figure 7. Estimated and measured data of DDM: 
(a) I-V/P-V curves, (b) Individual abs(error) 

 
It is seen from Table 8 that all six 

algorithms, including IJAYA, SATLBO, TLABC, 
GWOCS, DE, and TADE, obtain the smallest best 
value of RMSE, which is as low as 2.4251x10-03. 
In terms of the standard deviation, TADE has the 
best result. Table 8 also shows that TADE obtains 
the smallest mean and worst values of RMSE. 
Moreover, TADE also requires less MNFE 
compared to IJAYA, SATBLO, TLABC, and 
GWOCS. Consequently, these prove that TADE 
can achieve highly accurate and reliable PV 
parameters on PMM because it outperforms the 
other five algorithms regarding the best, worst, 
mean, and SD values of RMSE. Furthermore, the 
RMSE value is plotted versus the number of 
function evaluations. In terms of the convergence 
speed, TADE yields the best performance for 
estimating the Photowatt-PWP 201 PV module 
parameters, as shown in Figure 8. All six 
algorithms achieve the same best RMSE values, 
but TADE performs the fastest convergence, 
subsequently DE, GWOCS, TLABC, IJAYA, and 
SATBLO. The simulations show that TADE 
requires less than 10000 NFEs to meet the best 
RMSE value. This result proves that the TADE 
algorithm has a speedy convergence 

performance. 

 
 

Figure 8. Convergence curves of the six 
algorithms for Photowatt PWP-201 PV module 

(PMM) 
 
To avoid inaccuracies in the results, the 

RMSE should be cross-checked using estimated 
values of IPVM, IOM, AM, RSM, and RPM, and 
measured current and voltage data. For TADE, the 
values of parameters found are IPVM = 1.03051430 
A, IOM = 3.48226301x10-06 A, RSM = 1.20127101 Ω, 
RPM = 981.98228397 Ω, and AM = 48.64283497. 
The RMSE result is 2.425075x10-03 and this value 
matches correctly. Additionally, the estimated 
values of RMSE obtained by TADE and other 
recent algorithms from literature are listed in Table 
9. Like the SDM case, Table 9 shows that TADE, 
together with most of the algorithms, acquire the 
same RMSE values in the different significant 
digits, except the TVACPSO algorithm, which 
yields the worst RMSE value. 

Furthermore, Table 10 and Figure 9 are 
used to confirm the accuracy of TADE. Table 10 
shows the measured and estimated currents and 
powers for the Photowatt PWP-201 PV module at 
25 different working conditions. As seen in Table 
10 and Figure 9, the individual abs(error), and the 
measured and estimated I-V/P-V curves show that 
they have a remarkable coincidence throughout 
the entire voltage range. Table 10 and Figure 9(b) 
show that the values of individual abs(error) of 
current are less than 0.005 Ampere, while the 
values of individual abs(error) of power are less 
than 0.08 Watt. These IAE values are small 
enough for a PV module and demonstrate the 
accuracy of estimated accuracy. Figure 9(a) 
shows a good matching between the measured 
and calculated data with these tiny errors. This 
observation, once more, verifies the accuracy of 
the TADE algorithm. 
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Figure 9. Estimated and measured data of the 
Photowatt-PWP-201 PV module: (a) I-V/P-V 

curves, (b) Individual abs(error) 
 
Additionally, the Friedman test (Alcalá-

Fdez et al., 2009) on SDM, DDM, and PMM PV 
parameter estimation problems is conducted to 
show the performance ranking of six algorithms. 
The results demonstrate that TADE achieves the 
best average ranking (1.40), followed by DE 
(2.67), GWOCS (4.63), IJAYA (5.76), TLABC 
(6.21), and SATLBO (7.93), as shown in Figure 10. 
According to the comparison results, it is evident 
that TADE has a high competitive achievement in 
the accuracy, reliability, and convergence speed 
of PV parameter estimation against the other 
algorithms. 

 
3.3. Estimation of the Parameters of the KC200GT 
PV Module 

 
In this section, the TADE algorithm is 

evaluated using a KC200GT PV module operating 
under various weather conditions. The KC200GT 
PV module experimental data at five solar 
irradiations and three different temperatures are 
used to investigate the influence of the irradiance 
and temperature on the performance of the TADE 
algorithm. These observations are important to 

estimate PV parameters under partial shading or 
different weather conditions (Chen et al., 2019a). 
The typical design range of IPVM, IOM, AM, RSM, and 
RPM for KC200GT PV module are chosen to be {0, 
10} A, {0, 3} µA, {1, 500}, {0, 100} Ω, and {0, 1} Ω, 
respectively. 

 
 

Figure 10. Friedman test results 

 
Table 11 presents the PV parameters 

estimation for the KC200GT PV module at various 
solar irradiation and temperature levels. Table 11 
shows that under different solar irradiation levels 
and a constant temperature of 25℃, the TADE 
algorithm can estimate PV parameters with 
acceptable values of RMSE. Similarly, the TADE 
algorithm also works very well in acquiring the PV 
parameters under a constant irradiance of 1000 
W/m2 and various temperature conditions. From 
Table 11, it can also be seen that IPVM is increased 
while IOM, RSM, RPM, and AM are decreased as the 
irradiance increasing. On the other hand, it can be 
found that IPVM is increased while IOM, RSM, RPM, 
and AM are fluctuation as the temperature 
increases. 

Again, to find out the accuracy of estimated 
parameters, the I-V and P-V curves of the 
KC200GT PV module at various irradiation and 
temperature conditions are plotted, as shown in 
Figures 11 and 12. It can be observed that under 
different irradiation and temperature conditions, 
the estimated and measured I-V and P-V curves 
are near enough. These results indicate that the 
TADE algorithm also performs well in estimating 
the PV module parameters under various 
irradiances and temperatures. 
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Figure 11. Estimated and measured data of 
TADE for the KC200GT PV module under various 

irradiances 

 

4. CONCLUSIONS:   
 
   TADE algorithm was successfully applied 
for optimally estimating the PV cell and module 
parameters. The experimental and statistical 
results showed that the TADE was outperformed 
most of the algorithms in accuracy, reliability, and 
convergence speed. Moreover, estimating PV 
parameters at different irradiance and temperature 
conditions also proved that the TADE algorithm 
could get outstanding results. Therefore, the 
proposed TADE algorithm could be recommended 
as an accurate and reliable technique for 
estimating PV cell and module parameters. 
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Table 1.  Error functions for SDM, DDM, and PMM 
 

Model 𝒇(𝑽, 𝑰, ∅) ∅ 

SDM 
𝐼 − (𝐼𝑃𝑉 − 𝐼𝑂 {exp [

(𝑉 + 𝐼𝑅𝑆)

A𝑉𝑇𝐻
] −  1} −  

𝑉 + 𝐼𝑅𝑆

𝑅𝑃
) 

{IPV, IO, RS, 

RP, A} 

DDM 
𝐼 − (𝐼𝑃𝑉 − 𝐼𝑂1 {exp [

(𝑉 + 𝐼𝑅𝑆)

A1𝑉𝑇𝐻
] −  1}

−   𝐼𝑂2 {exp [
(𝑉 + 𝐼𝑅𝑆)

A2𝑉𝑇𝐻
] −  1} −

𝑉 + 𝐼𝑅𝑆

𝑅𝑃
) 

{IPV, IO1, 

IO2,RS, RP, A1, 

A2} 

PMM 
 𝐼 − (𝐼𝑃𝑉𝑀 − 𝐼OM {exp [

(𝑉+𝐼𝑅𝑆𝑀)

𝐴𝑀𝑉𝑇𝐻
] −  1} −

𝑉+𝐼𝑅𝑆𝑀

𝑅𝑃𝑀
)  {IPVM, IOM, 

RSM, RPM, AM} 

 
Algorithm 1.  Pseudocode of  TADE 

 

1. Input values of D and NP 

2. Define vector xmin and xmax 

3. Randomly generate a population of individuals by using Equation (18) 

4. while termination criteria NFE < MNFE do 

5. Evaluate the population to obtain the best candidates that satisfy the RMSE 

6. Adapt control parameters Fi
(G) and CRi

(G)) as per Equations (20), (21), and (22) 

7. Perform mutation to generate mutant individuals vi,j
(G) as per Equation (23)  

8. Perform crossover to generate trial individuals ti,j(
G) as per Equation (24) 

9. Select the best fitness values and individuals for next-generation xi,j
(G+1) using 

Equation (25). 

10. Update the population for the next generation with Equation (27) 

11. Increase the counter G = G +1 

12. end while loop 

13. Postprocess results and visualization 

 

Table 2.  Comparison of the RTC-France PV cell (SDM) 
 

 IJAYA SATLBO TLABC GWOCS DE TADE 

IPV (A) 0.7608 0.7608 0.7608 0.7608 0.7608 0.7608 

IO (µA) 0.3228 0.3232 0.3230 0.3219 0.3230 0.3230 

RS (Ω) 0.0364 0.0363 0.0364 0.0364 0.0364 0.0364 

RP (Ω) 53.7595 53.7256 53.7164 53.6320 53.7185 53.7185 

A 1.4811 1.4812 1.4812 1.4808 1.4812 1.4812 

Best 9.8603x10-04 9.8602x10-04 9.8602x10-04 9.8607x10-04 9.8602x10-04 9.8602x10-04 

Worst 1.0622x10-03 9.9494x10-03 1.0397x10-03 9.9095x10-04 1.5686x10-03 9.8979x10-04 

Mean 9.9204x10-03 9.8780x10-04 9.9852x10-04 9.8874x10-04 1.1224x10-03 9.8687x10-04 

SD 1.4000x10-05 2.3000x10-06 1.8602x10-05 2.4696x10-06 1.3800x10-04 1.3448x10-06 

MNFE 50000 50000 50000 50000 20000 10000 
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Table 3.  Estimated RMSE of the RTC-France PV cell (SDM) by different algorithms 
 

Ref. Algorithm RMSE 

Proposed TADE 9.860219x10-04 

Liao et al., 2020 TPTLBO 9.8602x10-04 

Xiong et al., 2019 SDO 9.8602x10-04 

Yu et al., 2019 PGJAYA 9.8602x10-04 

Ćalasan et al., 2019 COA 9.860221x10-04 

Pourmousa et al., 2019 ILCOA 9.86021x10-04 

Li et al., 2019a ITLBO 9.8602x10-04 

Li, et al., 2019b MADE 9.8602x10-04 

Beigi and Maroosi, 2018 HFAPS 9.8602x10-04 

Kang et al., 2018 ImCSA 9.8602x10-04 

Gao et al., 2018 ISCE 9.860219x10-04 

Xiong et al., 2018 SOS 9.8609x10-04 

Chen et al., 2018a pSFS 9.8602x10-04 

Lin et al., 2017 MSSO 9.8607x10-04 

Chen et al., 2017 BLPSO 11.239x10-04 

Oliva et al., 2017 CIABC 9.8602x10-04 

Zhang et al., 2016 PCE 9.86022x10-04 

 

Table 4.  Estimated results of the RTC-France PV cell (SDM) obtained using TADE 
 

Item 

Measured  Estimated I Estimated P 

V (Volt) 
I 

(Ampere) 
Iest (Ampere) IAE Pest (Watt) IAE 

1 -0.2057 0.7640 0.76408770 0.00008770 -0.15717284 0.00001804 

2 -0.1291 0.7620 0.76266309 0.00066309 -0.09845980 0.00008560 

3 -0.0588 0.7605 0.76135531 0.00085531 -0.04476769 0.00005029 

4 0.0057 0.7605 0.76015399 0.00034601 0.00433288 0.00000197 

5 0.0646 0.7600 0.75905521 0.00094479 0.04903497 0.00006103 

6 0.1185 0.7590 0.75804234 0.00095766 0.08982802 0.00011348 

7 0.1678 0.7570 0.75709165 0.00009165 0.12703998 0.00001538 

8 0.2132 0.7570 0.75614136 0.00085864 0.16120934 0.00018306 

9 0.2545 0.7555 0.75508687 0.00041313 0.19216961 0.00010514 

10 0.2924 0.7540 0.75366388 0.00033612 0.22037132 0.00009828 

11 0.3269 0.7505 0.75139097 0.00089097 0.24562971 0.00029126 

12 0.3585 0.7465 0.74735385 0.00085385 0.26792636 0.00030611 

13 0.3873 0.7385 0.74011722 0.00161722 0.28664740 0.00062635 

14 0.4137 0.7280 0.72738223 0.00061777 0.30091803 0.00025557 

15 0.4373 0.7065 0.70697265 0.00047265 0.30915914 0.00020669 

16 0.4590 0.6755 0.67528015 0.00021985 0.30995359 0.00010091 

17 0.4784 0.6320 0.63075827 0.00124173 0.30175476 0.00059404 
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18 0.4960 0.5730 0.57192836 0.00107164 0.28367647 0.00053153 

19 0.5119 0.4990 0.49960702 0.00060702 0.25574883 0.00031073 

20 0.5265 0.4130 0.41364879 0.00064879 0.21778609 0.00034159 

21 0.5398 0.3165 0.31751011 0.00101011 0.17139196 0.00054526 

22 0.5521 0.2120 0.21215494 0.00015494 0.11713074 0.00008554 

23 0.5633 0.1035 0.10225131 0.00124869 0.05759816 0.00070339 

24 0.5736 -0.0100 -0.00871754 0.00128246 -0.00500038 0.00073562 

25 0.5833 -0.1230 -0.12550741 0.00250741 -0.07320847 0.00146257 

26 0.5900 -0.2100 -0.20847233 0.00152767 -0.12299867 0.00090133 

RMSE 
     

0.00098602 

 

Table 5.  Comparison of the RTC-France PV cell (DDM) 
 

 IJAYA SATLBO TLABC GWOCS DE TADE 

IPV (A) 0.7601 0.7608 0.7608 0.76076 0.7608 0.7608 

IO1 (µA) 0.0050 0.2509 0.4239 0.53772 0.3756 0.5798 

IO2 (µA) 0.7509 0.5454 0.2401 0.24855 0.2715 0.2624 

RS (Ω) 0.0376 0.0366 0.0367 0.03666 0.0366 0.0369 

RP (Ω) 77.8519 55.1170 54.6680 54.7331 54.5704 54.8885 

A1 1.2186 1.4598 1.9075 2.0000 1.9999 2.0685 

A2 1.6247 1.9994 1.4567 1.4588 1.4664 1.4632 

Best 9.8293x10-04 9.8280x10-04 9.8415x10-04 9.8334x10-04 9.8344x10-04 9.8243x10-04 

Worst 1.4055x10-03 1.0470x10-03 1.5048x10-03 1.0017x10-03 1.4490x10-03 9.9664x10-04 

Mean 1.0269x10-03 9.9811x10-04 1.0555x10-03 9.9411x10-04 1.0150x10-03 9.8730x10-04 

SD 9.8300x10-05 1.9500x10-05 1.5503x10-04 9.5937x10-06 7.8100x10-05 2.4831x10-06 

MNFE 50000 50000 50000 50000 30000 20000 

 

Table 6.  Estimated RMSE of the RTC-France PV cell (DDM) by different algorithms 
 

Ref. Algorithm RMSE 

Proposed TADE 9.824321x10-04 

Liao et al., 2020 TPTLBO 9.8248x10-04 

Xiong et al., 2019 SDO 9.8250x10-04 

Yu et al., 2019 PGJAYA 9.8263x10-04 

Li et al., 2019a ITLBO 9.8248x10-04 

Li, et al., 2019b MADE 9.8261x10-04 

Beigi and Maroosi, 2018 HFAPS 9.8248x10-04 

Kang et al., 2018 ImCSA  9.8249x10-04 

Gao et al., 2018 ISCE 9.824849x10-04 

Xiong et al., 2018 SOS 9.8518x10-04 

Chen et al., 2018a pSFS  9.8255x10-04 

Lin et al., 2017 MSSO 9.8281x10-04 

Chen et al., 2017 BLPSO 11.042x10-04 

Oliva et al., 2017 CIABC  9.8262x10-04 
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Zhang et al., 2016 PCE 9.8248x10-04 

 

Table 7.  Estimated results of the RTC-France PV cell (DDM) obtained using TADE 

 

Item 

Measured  Estimated I Estimated P 

V (Volt) 
I 

(Ampere) 
Iest (Ampere) IAE Pest (Watt) IAE 

1 -0.2057 0.7640 0.76401767 0.00001767 -0.15715844 0.00000364 

2 -0.1291 0.7620 0.76262337 0.00062337 -0.09845468 0.00008048 

3 -0.0588 0.7605 0.76134325 0.00084325 -0.04476698 0.00004958 

4 0.0057 0.7605 0.76016689 0.00033311 0.00433295 0.00000190 

5 0.0646 0.7600 0.75908981 0.00091019 0.04903720 0.00005880 

6 0.1185 0.7590 0.75809445 0.00090555 0.08983419 0.00010731 

7 0.1678 0.7570 0.75715526 0.00015526 0.12705065 0.00002605 

8 0.2132 0.7570 0.75620793 0.00079207 0.16122353 0.00016887 

9 0.2545 0.7555 0.75514501 0.00035499 0.19218440 0.00009035 

10 0.2924 0.7540 0.75370046 0.00029954 0.22038201 0.00008759 

11 0.3269 0.7505 0.75139440 0.00089440 0.24563083 0.00029238 

12 0.3585 0.7465 0.74731819 0.00081819 0.26791357 0.00029332 

13 0.3873 0.7385 0.74004752 0.00154752 0.28662040 0.00059935 

14 0.4137 0.7280 0.72729568 0.00070432 0.30088222 0.00029138 

15 0.4373 0.7065 0.70689623 0.00039623 0.30912572 0.00017327 

16 0.4590 0.6755 0.67523883 0.00026117 0.30993462 0.00011988 

17 0.4784 0.6320 0.63076307 0.00123693 0.30175705 0.00059175 

18 0.4960 0.5730 0.57197238 0.00102762 0.28369830 0.00050970 

19 0.5119 0.4990 0.49966913 0.00066913 0.25578063 0.00034253 

20 0.5265 0.4130 0.41369849 0.00069849 0.21781226 0.00036776 

21 0.5398 0.3165 0.31752601 0.00102601 0.17140054 0.00055384 

22 0.5521 0.2120 0.21212636 0.00012636 0.11711496 0.00006976 

23 0.5633 0.1035 0.10218829 0.00131171 0.05756266 0.00073889 

24 0.5736 -0.0100 -0.00876745 0.00123255 -0.00502901 0.00070699 

25 0.5833 -0.1230 -0.12552567 0.00252567 -0.07321912 0.00147322 

26 0.5900 -0.2100 -0.20839585 0.00160415 -0.12295355 0.00094645 

RMSE 
     

0.00098243 

 

Table 8.  Comparison of the Photowatt-PWP 201 PV module 

 

 IJAYA SATLBO TLABC GWOCS DE TADE 

IPVM (A) 1.0305 1.0305 1.0306 1.03049 1.0305 1.0305 

IOM (µA) 3.4703 3.4827 3.4715 3.465 3.4823 3.4823 

RSM (Ω) 1.2016 1.2013 1.2017 1.2019 1.2013 1.2013 

RPM (Ω) 977.3752 982.4038 972.9357 982.7566 981.9819 981.9823 

AM 48.6298 48.6433 48.6313 48.62367 48.6428 48.6428 
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Best 2.4251x10-03 2.4251x10-03 2.4251x10-03 2.4251x10-03 2.4251x10-03 2.4251x10-03 

Worst 2.4393x10-03 2.4291x10-03 2.4458x10-03 2.4275x10-03 2.4384x10-03 2.4268x10-03 

Mean 2.4251x10-03 2.4254x10-03 2.4265x10-03 2.4261x10-03 2.4259x10-03 2.4251x10-03 

SD 3.7800x10-06 7.4100x10-07 3.9957x10-06 1.1967x10-06 2.7000x10-06 5.2004x10-07 

MNFE 50000 50000 50000 50000 10000 10000 

 

Table 9.  Estimated RMSE of the Photowatt-PWP201 PV module by different algorithms 

 

Ref. Algorithm RMSE 

proposed TADE 2.425075x10-03 

Liao et al., 2020 TPTLBO 2.4251x10-03 

Yu et al., 2019 PGJAYA 2.425075x10-03 

Li et al., 2019a ITLBO 2.4251x10-03 

Li, et al., 2019b MADE 2.425x10-03 

Xiong et al., 2018 SOS 2.4251x10-03 

Kang et al., 2018 ImCSA 2.425x10-03 

Jordehi, 2016b TVACPSO 6.9665x10-03 

 

Table 10.  Estimated results of the Photowatt-PWP 201 PV module obtained using TADE 

 

Item 

Measured  Estimated I Estimated P 

V (Volt) 
I 

(Ampere) 
Iest (Ampere) IAE Pest (Watt) IAE 

1 0.1248 1.0315 1.02911916 0.00238084 0.12843407 0.00029713 

2 1.8093 1.0300 1.02738107 0.00261893 1.85884058 0.00473842 

3 3.3511 1.0260 1.02574180 0.00025820 3.43736334 0.00086526 

4 4.7622 1.0220 1.02410715 0.00210715 4.87700309 0.01003469 

5 6.0538 1.0180 1.02229180 0.00429180 6.18875013 0.02598173 

6 7.2364 1.0155 1.01993068 0.00443068 7.38062638 0.03206218 

7 8.3189 1.0140 1.01636311 0.00236311 8.45502304 0.01965844 

8 9.3097 1.0100 1.01049615 0.00049615 9.40741602 0.00461902 

9 10.2163 1.0035 1.00062897 0.00287103 10.22272574 0.02933131 

10 11.0449 0.9880 0.98454838 0.00345162 10.87423839 0.03812281 

11 11.8018 0.9630 0.95952168 0.00347832 11.32408292 0.04105048 

12 12.4929 0.9255 0.92283882 0.00266118 11.52893307 0.03324588 

13 13.1231 0.8725 0.87259966 0.00009966 11.45121263 0.00130788 

14 13.6983 0.8075 0.80727426 0.00022574 11.05828504 0.00309221 

15 14.2221 0.7265 0.72833648 0.00183648 10.35847422 0.02611857 

16 14.6995 0.6345 0.63713800 0.00263800 9.36561003 0.03877728 

17 15.1346 0.5345 0.53621306 0.00171306 8.11537022 0.02592652 

18 15.5311 0.4275 0.42951132 0.00201132 6.67078334 0.03123809 

19 15.8929 0.3185 0.31877448 0.00027448 5.06625098 0.00436233 

20 16.2229 0.2085 0.20738951 0.00111049 3.36445923 0.01801542 
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21 16.5241 0.1010 0.09616717 0.00483283 1.58907597 0.07985813 

22 16.7987 -0.0080 -0.00832539 0.00032539 -0.13985566 0.00546606 

23 17.0499 -0.1110 -0.11093648 0.00006352 -1.89145593 0.00108297 

24 17.2793 -0.2090 -0.20924727 0.00024727 -3.61564628 0.00427258 

25 17.4885 -0.3030 -0.30086359 0.00213641 -5.26165284 0.03736266 

RMSE 
     

0.00242507 

 

Table 11.  Estimated results for the KC200GT PV module at different irradiance and temperature 
obtained using TADE 

 

Irradiance, Temperature 

 200 W/m2, 
25℃ 

400 W/m2, 
25℃ 

600 W/m2, 
25℃ 

800 W/m2, 
25℃ 

1000 W/m2, 
25℃ 

1000 W/m2, 
50℃ 

1000 W/m2, 
75℃ 

IPVM (A) 1.57569399 3.24498143 4.88010408 6.53597163 8.19970756 8.23783237 8.35619048 

IOM (µA) 0.01783577 0.00889579 0.00751949 0.00024648 0.00005773 2.36019426 0.10624394 

RSM (Ω) 65.548458 62.590896 62.265731 53.080513 50.274351 71.148817 49.346298 

RPM (Ω) 0.84520850 0.39610901 0.32958665 0.31117124 0.28686157 0.14227928 0.33271560 

AM 124077.3595 349.256060 256.428075 153.274461 109.561569 224.722903 101.771266 

Best  7.455108x10-03 1.293504x10-02 2.702622x10-02 2.275030x10-02 1.179859x10-02 6.527374x10-02 3.768100x10-02 

Worst  7.498053x10-03 1.294912x10-02 2.739434x10-02 2.299584x10-02 1.199074x10-02 6.549381x10-02 3.788584x10-02 

Mean  7.471488x10-03 1.293808x10-02 2.708569x10-02 2.288880x10-02 1.183797x10-02 6.537953x10-02 3.773224x10-02 

SD  1.303167x10-05 4.587912x10-06 1.004395x10-04 7.942290x10-05 4.985857x10-05 7.861897x10-05 6.353135x10-05 

MNFE 10000 10000 10000 10000 10000 10000 10000 
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Figure 12. Estimated and measured data of the KC200GT PV module under various temperature 
levels 

 


